分段覆盖率TPR】的更多相关文章

黑产监控中,需要尽可能做到尽可能少的误伤和尽可能准确地探测,可以选择“在FPR较低时的TPR加权平均值”作为平均指标. 根据混淆矩阵计算TPR(覆盖率)和FPR(打扰率): 覆盖率:TPR = TP /(TP + FN) 打扰率:FPR = FP /(FP + TN) TP.FN.FP.TN分别为真正例.假反例.假正例.真反例 通过设定不同的阈值,会有一系列TPR和FPR,就可以绘制出ROC曲线: 这里的评分指标,首先计算3个覆盖率TPR: TPR1:FPR=0.001时的TPR TPR2:FP…
数据说明 本数据是一份汽车贷款违约数据 application_id    申请者ID account_number 账户号 bad_ind            是否违约 vehicle_year      汽车购买时间 vehicle_make     汽车制造商 bankruptcy_ind 曾经破产标识 tot_derog           五年内信用不良事件数量(比如手机欠费消号) tot_tr                  全体账户数量 age_oldest_tr     最久…
分类器性能指标之ROC曲线.AUC值 一 roc曲线 1.roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性. 横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例:(1-Specificity) 纵轴:真正类率(true postive rate TPR)灵敏度,Sensitivity(正类覆盖率) 2针对一个二分类问题,将实例分成正类(postive…
一.roc曲线 1.roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性. 横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例:(1-Specificity) 纵轴:真正类率(true postive rate TPR)灵敏度,Sensitivity(正类覆盖率) 2针对一个二分类问题,将实例分成正类(postive)或者负类(negative).但是实…
人工智能概述 人工智能的定义 · 人工智能是通过机器来模拟人类认识能力的一种科技能力 · 人工智能最核心的能力就是根据给定的输入做出判断或预测 · 思考:通过什么途径才能让机器具备这样的能力? · 举一个例子: 机器也需要学习 什么是机器学习 机器学习的定义 · 机器学习为人工智能提供了基础,机器学习就是一种使用数据来训练软件模型的技术. 什么是机器学习 理解模型 模型可以根据X的数值计算出Y的值,简单的说,如果有一个函数,输入一组X的数值(特征值),机器计算出中Y(预测值)的数值,f(x) =…
ROC曲线指受试者工作特征曲线 / 接收器操作特性曲线(receiver operating characteristic curve), 是反映敏感性和特异性连续变量的综合指标,是用构图法揭示敏感性和特异性的相互关系,它通过将连续变量设定出多个不同的临界值,从而计算出一系列敏感性和特异性,再以敏感性为纵坐标.(1-特异性)为横坐标绘制成曲线,曲线下面积越大,诊断准确性越高.在ROC曲线上,最靠近坐标图左上方的点为敏感性和特异性均较高的临界值. ROC曲线的例子 考虑一个二分问题,即将实例分成正…
http://www.cnblogs.com/dlml/p/4403482.html 分类器性能指标之ROC曲线.AUC值 一 roc曲线 1.roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性. 横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例:(1-Specificity) 纵轴:真正类率(true postive rate TPR)灵敏度,Se…
一. ROC曲线 1.roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性. 横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例:(1-Specificity) 纵轴:真正类率(true postive rate TPR)灵敏度,Sensitivity(正类覆盖率) 2.针对一个二分类问题,将实例分成正类(postive)或者负类(negative).但…
混淆矩阵.准确率.召回率.ROC曲线.AUC 假设有一个用来对猫(cats).狗(dogs).兔子(rabbits)进行分类的系统,混淆矩阵就是为了进一步分析性能而对该算法测试结果做出的总结.假设总共有 27 只动物:8只猫, 6条狗,13只兔子.结果的混淆矩阵如上图所示,我们可以发现,只有主对角线上的预测结果是完全正确的.每一列的和为预测为该类的数量,每一行的和为实际该类的数量.在这个混淆矩阵中,实际有8只猫,但是系统将其中3只预测成了狗:对于6条狗,其中有1条被预测成了兔子,2条被预测成了猫…
  版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u013385925/article/details/80385873 面试的时候,一句话说明AUC的本质和计算规则: AUC:一个正例,一个负例,预测为正的概率值比预测为负的概率值还要大的可能性. 所以根据定义:我们最直观的有两种计算AUC的方法 1:绘制ROC曲线,ROC曲线下面的面积就是AUC的值 2:假设总共有(m+n)个样本,其…