参考资料: http://stackoverflow.com/questions/32281417/understadning-treereduce-in-spark http://stackoverflow.com/questions/34078430/treereduce-vs-reducebykey-in-spark reduceByKey和treeReduce之间有一个根本区别,reduceByKey它只对key-value pair RDDs可用,而treeReduce可以对任何RDD…
spark笔记 spark简介 saprk 有六个核心组件: SparkCore.SparkSQL.SparkStreaming.StructedStreaming.MLlib,Graphx SparkCore 相当于Hadoop中的MapReduce,用于大规模离线批处理计算 SparkSQL 相当于Hive(稍微类似),用于交互式计算 注意: 1.交互式计算:用户界面中的查询条件进行过滤查询,然后交给SparkSQL进行处理,产生输出数据.速度比较快 2.交互式计算框架:Presto.Imp…
变量的定义 val a: Int = 1 var b = 2 方法和函数 区别:函数可以作为参数传递给方法 方法: def test(arg: Int): Int=>Int ={ 方法体 } val fun = (test _: Int =>(Int=>Int))=>函数体 逻辑执行语句 val a = if(条件){ 执行逻辑 返回值 }else{ 执行逻辑 } while(条件){ 执行逻辑 } val arr = Array(1,2,3,4,5) for(i <- 0…
目录 概况 手工搭建集群 引言 安装Scala 配置文件 启动与测试 应用部署 部署架构 应用程序部署 核心原理 RDD概念 RDD核心组成 RDD依赖关系 DAG图 RDD故障恢复机制 Standalone模式的Spark架构 YARN模式的Spark架构 应用程序资源构建 API WordCount示例 RDD构建 RDD缓存与持久化 RDD分区数 共享变量 RDD Operation RDD Operation隐式转换 RDD[T]分区Operation RDD[T]常用聚合Operati…
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.VoidFunction;import scala.T…
先看一下原理性的文章:http://jerryshao.me/architecture/2013/10/08/spark-storage-module-analysis/ ,http://jerryshao.me/architecture/2013/10/08/spark-storage-module-analysis/  , 另外,spark的存储使用了Segment File的概念(http://en.wikipedia.org/wiki/Segmented_file_transfer ),…
无论是Hadoop还是spark,shuffle操作都是决定其性能的重要因素.在不能减少shuffle的情况下,使用一个好的shuffle管理器也是优化性能的重要手段. ShuffleManager的主要功能是在task直接传递数据,所以getWriter和getReader是它的主要接口. 大流程:   1)需求方:当一个Stage依赖于一个shuffleMap的结果,那它在DAG分解的时候就能识别到这个依赖,并注册到shuffleManager:   2)供应方:也就是shuffleMap,…
Stage 是一组独立的任务,他们在一个job中执行相同的功能(function),功能的划分是以shuffle为边界的.DAG调度器以拓扑顺序执行同一个Stage中的task. /** * A stage is a set of independent tasks all computing the same function that need to run as part * of a Spark job, where all the tasks have the same shuffle…
了解RDD之前,必读UCB的论文,个人认为这是最好的资料,没有之一. http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. Represents an immutable,* partitioned collection of elements that can be operated o…
spark支持YARN做资源调度器,所以YARN的原理还是应该知道的:http://www.socc2013.org/home/program/a5-vavilapalli.pdf    但总体来说,这是一篇写得一般的论文,它的原理没有什么特别突出的,而且它列举的数据没有对比性,几乎看不出YARN有什么优势.反正我看完的感觉是,YARN的资源分配在延迟上估计很糟糕.而实际使用似乎也印证了这个预感. Abstract  two key shortcomings: 1) tight coupling…