visdom可视化pytorch训练过程】的更多相关文章

一.前言 在深度学习模型训练的过程中,常常需要实时监听并可视化一些数据,如损失值loss,正确率acc等.在Tensorflow中,最常使用的工具非Tensorboard莫属:在Pytorch中,也有类似的TensorboardX,但据说其在张量数据加载的效率方面不如visdom.visdom是FaceBook开发的一款可视化工具,其实质是一款在网页端的web服务器,对Pytorch的支持较好. 二.安装和启动 visdom的安装比较简单,可以直接使用pip命令. # visdom 安装指令 p…
visdom使用监视训练过程的应用,viz.line参数说明 待办 viz = Visdom() viz.line([0.], [0.], win='train_loss', opts=dict(title='train loss')) viz.line([[0.0, 0.0]], [0.], win='test', opts=dict(title='test loss&acc.', legend=['loss', 'acc.'])) 这里前两个参数,一个表示指定变化指标数量,一个或者两个提前占…
一.visdom可视化工具 安装:pip install visdom 启动:命令行直接运行visdom 打开WEB:在浏览器使用http://localhost:8097打开visdom界面 二.使用visdom # 导入Visdom类 from visdom import Visdom # 定义一个env叫Mnist的board,如果不指定,则默认归于main viz = Visdom(env='Mnist') # 在window Accuracy中画train acc和test acc,x…
​  前言 训练过程主要是指编写train.py文件,其中包括参数的解析.训练日志的配置.设置随机数种子.classdataset的初始化.网络的初始化.学习率的设置.损失函数的设置.优化方式的设置.tensorboard的配置.训练过程的搭建等. 由于篇幅问题,这些内容将分成多篇文章来写.本文介绍参数解析的两种方式. 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招聘信息. 一个模型中包含众多的训练参数,如文件保存目录.数据集目录.学习率.epoch数…
tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 (四) tensorflow笔记:常用函数说明 (五) tensorflow笔记:模型的保存与训练过程可视化 (六)tensorflow笔记:使用tf来实现word2vec 保存与读取模型 在使用tf来训练模型的时候,难免会出现中断的情况.这时候自然就希望能够将辛辛苦苦得到的中间参数保留下来,不然…
在使用tf来训练模型的时候,难免会出现中断的情况.这时候自然就希望能够将辛辛苦苦得到的中间参数保留下来,不然下次又要重新开始. 保存模型的方法: #之前是各种构建模型graph的操作(矩阵相乘,sigmoid操作等...) saver=tf.train.Saver()#生成saver with tf.Session() as sess: sess.run(tf.global_variables_initializer())#先对模型进行初始化 #然后将数据丢入模型进行训练blabla #训练完之…
#训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #设置超参数 max_step=1000 learning_rate=0.001 dropout=0.9 # 用logdir明确标明日志文件储存路径 #训练过程中的数据储存在E:\\MNIST_data\\目录中,通过这个路径指定--log_dir data…
学习率是深度学习中的一个重要超参数,选择合适的学习率能够帮助模型更好地收敛. 本文主要介绍深度学习训练过程中的6种学习率衰减策略以及相应的Pytorch实现. 1. StepLR 按固定的训练epoch数进行学习率衰减. 举例说明: # lr = 0.05 if epoch < 30 # lr = 0.005 if 30 <= epoch < 60 # lr = 0.0005 if 60 <= epoch < 90 在上述例子中,每30个epochs衰减十倍学习率. 计算公式…
一个简洁.好用的Pytorch训练模板 代码地址:https://github.com/KinglittleQ/Pytorch-Template 怎么使用 1) 更改template.py 替换 __init__方法中的内容,增添自己的模型.优化器.评估器等等. class Model(): def __init__(self, args): self.writer = tX.SummaryWriter(log_dir=None, comment='') self.train_logger =…
以代码的思想去详细讲解yolov3算法的实现原理和训练过程,并教使用visdrone2019数据集和自己制作数据集两种方式去训练自己的pytorch搭建的yolov3模型,吐血整理万字长文,纯属干货 ! 实现思路 第一步:Pytorch搭建yolo3目标检测平台 模型yolov3和预训练权重下载 yolo3算法原理实现思路 一.预测部分 1.yolo3的网络模型架构和实现 2.主干特征网络darknet53介绍和结果(获取3个初始特征层) 3.从初始特征获取预测结果(最终的3个有效的特征层) 4…