Sklearn (一) 监督学习】的更多相关文章

标签: 半监督学习 作者:炼己者 欢迎大家访问 我的简书 以及 我的博客 本博客所有内容以学习.研究和分享为主,如需转载,请联系本人,标明作者和出处,并且是非商业用途,谢谢! --- 摘要:半监督学习很重要,为什么呢?因为人工标注数据成本太高,现在大家参加比赛的数据都是标注好的了,那么如果老板给你一份没有标注的数据,而且有几百万条,让你做个分类什么的,你怎么办?不可能等标注好数据再去训练模型吧,所以你得会半监督学习算法. 不过我在这里先打击大家一下,用sklearn的包做不了大数据量的半监督学习…
本系列博文是根据SKlearn的一个学习小结,并非原创!  1.直接学习TensorFlow有点不知所措,感觉需要一些基础知识做铺垫.  2.之前机器学习都是理论<Ng机器学习基础>+底层编写<机器学习实战>,现实生活基本用不到.  3.会增加一些个人总结,也会删除一些以前学过的知识. 广义线性模型 1.1 普通最小二乘法 然而,对于普通最小二乘的系数估计问题,其依赖于模型各项的相互独立性.当各项是相关的,且设计矩阵  的各列近似线性相关,那么,设计矩阵会趋向于奇异矩阵,这会导致最…
# K近邻,适用于小型数据集,是很好的基准模型,容易解释 from sklearn.neighbors import KNeighborsClassifier # 线性模型,非常可靠的首选算法,适用于很大的数据集,也适用于高维数据 from sklearn.linear_model import LinearRegression # 朴素贝叶斯,只适用于分类问题,比线性模型速度还快,适用于非常大的数据集和高维数据,但精度通常低于线性模型 from sklearn.linear_model imp…
sklearn监督学习的各个模块 neighbors近邻算法,svm支持向量机,kernal_ridge核岭回归,discriminant_analysis判别分析,linear_model广义线性模型 ensemble集成方法,tree决策树,native_bayes朴素贝叶斯,cross_decomposition交叉分解,gaussian_process高斯过程 neural_network多层神经网络,calibration概率校准,isotonk保序回归,feature_selecti…
sklearn监督学习的各个模块 neighbors近邻算法,svm支持向量机,kernal_ridge核岭回归,discriminant_analysis判别分析,linear_model广义线性模型 ensemble集成方法,tree决策树,native_bayes朴素贝叶斯,cross_decomposition交叉分解,gaussian_process高斯过程 neural_network多层神经网络,calibration概率校准,isotonk保序回归,feature_selecti…
前言 近年来AI人工智能成为社会发展趋势,在IT行业引起一波热潮,有关机器学习.深度学习.神经网络等文章多不胜数.从智能家居.自动驾驶.无人机.智能机器人到人造卫星.安防军备,无论是国家级军事设备还是广泛的民用设施,都充斥着AI应用的身影.接下来的一系列文章将会由浅入深从不同角度分别介绍机器学习.深度学习之间的关系与区别,通过一系统的常用案例讲述它们的应用场景.本文将会从最常见的机器学习开始介绍相关的知识应用与开发流程. 目录 一.浅谈机器学习 二.基本概念 三.常用方法介绍 四.线性模型 五.…
sklearn学习总结(超全面) 关于sklearn,监督学习几种模型的对比 sklearn之样本生成make_classification,make_circles和make_moons python np.logspace(1,10,5) np.linspace() 创建等比数列,生成(start,stop)区间指定元素个数num的list,均匀分布np.logspace() log分布间距生成listnp.arange() 生成(start,stop)区间指定步长step的list num…
特征缩放:# 为了追求机器学习和最优化算法的最佳性能,我们将特征缩放 from sklearn.preprocessing import StandardScaler sc = StandardScaler() sc.fit(X_train) # 估算每个特征的平均值和标准差 sc.mean_ # 查看特征的平均值,由于Iris我们只用了两个特征,所以结果是array([ 3.82857143, 1.22666667]) sc.scale_ # 查看特征的标准差,这个结果是array([ 1.7…
前言 本篇我会使用scikit-learn这个开源机器学习库来对iris数据集进行分类练习. 我将分别使用两种不同的scikit-learn内置算法--Decision Tree(决策树)和kNN(邻近算法),随后我也会尝试自己实现kNN算法.目前为止,我还是在机器学习的入门阶段,文章中暂不详细解释算法原理,如果想了解细节信息可自行搜索. 代码分解 读取数据集 scikit-learn中预制了很多经典数据集,非常方便我们自己练习用.使用方式也很容易: # 引入datasets from skle…
Titanic 数据集是从 kaggle下载的,下载地址:https://www.kaggle.com/c/titanic/data 数据一共又3个文件,分别是:train.csv,test.csv,gender_submission.csv 先把需要视同的库导入: import os import datetime import operator import numpy as np import pandas as pd import xgboost as xgb from sklearn.…