决策树与随机森林Adaboost算法】的更多相关文章

一. 决策树 决策树(Decision Tree)及其变种是另一类将输入空间分成不同的区域,每个区域有独立参数的算法.决策树分类算法是一种基于实例的归纳学习方法,它能从给定的无序的训练样本中,提炼出树型的分类模型.树中的每个非叶子节点记录了使用哪个特征来进行类别的判断,每个叶子节点则代表了最后判断的类别.根节点到每个叶子节点均形成一条分类的路径规则.而对新的样本进行测试时,只需要从根节点开始,在每个分支节点进行测试,沿着相应的分支递归地进入子树再测试,一直到达叶子节点,该叶子节点所代表的类别即是…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习还是随机森林或支持向量机?>(作者Bio:SebastianRaschka)中提到,在日常机器学习工作或学习中,当我们遇到有监督学习相关问题时,不妨考虑下先用简单的假设空间(简单模型集合),例如线性模型逻辑回归.若效果不好,也即并没达到你的预期或评判效果基准时,再进行下换其他更复杂模型来实验. ----…
Bagging与随机森林算法原理总结 在集成学习原理小结中,我们学习到了两个流派,一个是Boosting,它的特点是各个弱学习器之间存在依赖和关系,另一个是Bagging,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合,本文就对集成学习中的Bagging和随机森林做一个总结. 随机森林是集成学习中可以和GBDT相较衡的算法,尤其是它可以很方便地进行并行训练,在现在的大数据大样本下很有诱惑力. 1.Bagging的原理 在集成学习原理总结的Bagging原理这一块,我们画了这么一张流程图 从…
目录 简介 决策树简单用法 决策树检测P0P3爆破 决策树检测FTP爆破 随机森林检测FTP爆破 简介 决策树和随机森林算法是最常见的分类算法: 决策树,判断的逻辑很多时候和人的思维非常接近. 随机森林算法,利用多棵决策树对样本进行训练并预测的一种分类器,并且其输出的类别是由个别决策树输出的类别的众数决定. 决策树简单用法 使用sklearn自带的iris数据集 # -*- coding: utf- -*- from sklearn.datasets import load_iris from…
[ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest) 决策树 决策树算法以树状结构表示数据分类的结果.每个决策点实现一个具有离散输出的测试函数,记为分支. 一棵决策树的组成:根节点.非叶子节点(决策点).叶子节点.分支 算法分为两个步骤:1. 训练阶段(建模) 2. 分类阶段(应用) 熵的概念 设用P(X)代表X发生的概率,H(X)代表X发生的不确定性,则有:P(X)越大,H(X)越小:P(X)越小,H(X)越大. 信息熵的一句话解释是:消除不确定性的程度…
LR 与SVM 不同 1.logistic regression适合需要得到一个分类概率的场景,SVM则没有分类概率 2.LR其实同样可以使用kernel,但是LR没有support vector在计算复杂度上会高出很多.如果样本量很大并且需要的是一个复杂模型,那么建议SVM 3. 如果样本比较少,模型又比较复杂.那么建议svm,它有一套比较好的解构风险最小化理论的保障,比如large margin和soft margin 相同 1. 由于hinge loss和entropy loss很接近,因…
决策树的构建满足信息熵增益最大化原则 决策树的优点: 可解释性高 能处理非线性的数据 不需要数据归一化 可以用于特征工程 对数据分布没有偏好 广泛使用 容易软件实现 可以转化为规则 决策树的弱点 启发式生成,不是最优解 容易过拟合 微小的数据改变会改变整个树的形状 对类别不平衡的数据不友好 随机森林指训练多个决策树结果,预测时回归取均值,分类取众数 随机体现在带放回的随机取数据子集做训练数据,随机选择的特征子集中选择一个特征 随机森林消除了决策树容易过拟合的缺点,不会因为训练数据的小变化而剧烈变…
1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 1.2 距离公式 两个样本的距离可以通过如下公式计算,又叫欧式距离. 简单理解这个算法: 这个算法是用来给特征值分类的,是属于有监督学习的领域,根据不断计算特征值和有目标值的特征值的距离来判断某个样本是否属于某个目标值. 可以理解为根据你的邻居来判断你属于哪个类别. 1.3 API sklea…
决策树的定义 决策树(decision tree)是一个树结构(可以是二叉树或非二叉树).其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别.使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果. 树是由节点和边两种元素组成的结构.理解树,就需要理解几个关键词:根节点.父节点.子节点和叶子节点. 父节点和子节点是相对的,说白了子节点由父节点根据某…
1. 决策树 一般的,一棵决策树包含一个根结点.若干内部结点和若干叶子结点,叶子节点对应决策结果,其他每个结点对应一个属性测试,每个结点包含的样本集合根据属性测试结果被划分到子结点中,而根结点包含样本全集,从根结点到每个叶子结点的路径对应了一个判定测试序列.其基本流程如下所示: 输入:训练集D={(x1,y1), (x2, y2), ......, (xm, ym)} 属性集A={a1, a2, ......, ad} 过程:函数TreeGenerate(D, A),传入参数为训练集D与属性集A…