TensorFlow损失函数】的更多相关文章

TensorFlow损失函数 正如前面所讨论的,在回归中定义了损失函数或目标函数,其目的是找到使损失最小化的系数.本文将介绍如何在 TensorFlow 中定义损失函数,并根据问题选择合适的损失函数. 声明一个损失函数需要将系数定义为变量,将数据集定义为占位符.可以有一个常学习率或变化的学习率和正则化常数. 在下面的代码中,设 m 是样本数量,n 是特征数量,P 是类别数量.这里应该在代码之前定义这些全局参数: 在标准线性回归的情况下,只有一个输入变量和一个输出变量: 在多元线性回归的情况下,输…
Reference: https://blog.csdn.net/marsjhao/article/details/72630147 分类问题损失函数-交叉熵(crossentropy) 交叉熵描述的是两个概率分布之间的距离,分类中广泛使用的损失函数,公式如下 在网络中可以通过Softmax回归将前向传播得到的结果变为交叉熵要求的概率分数值.Tensorflow中,Softmax回归的参数被去掉,通过一层将神经网络的输出变为一个概率分布. 代码实现 import tensorflow as tf…
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/limiyudianzi/article/details/80697711 我主要分三篇文章给大家介绍tensorflow的损失函数,本篇为tensorflow自定义损失函数.  (一)tensorflow内置的四个损失函数  (二)其他损失函数  (三)自定义损失函数 自定义损失函数是损失函数章节的结尾,学习自定义损失函数,对于提高分类…
正如前面所讨论的,在回归中定义了损失函数或目标函数,其目的是找到使损失最小化的系数.本节将介绍如何在 TensorFlow 中定义损失函数,并根据问题选择合适的损失函数. 声明一个损失函数需要将系数定义为变量,将数据集定义为占位符.可以有一个常学习率或变化的学习率和正则化常数. 在下面的代码中,设 m 是样本数量,n 是特征数量,P 是类别数量.这里应该在代码之前定义这些全局参数: 在标准线性回归的情况下,只有一个输入变量和一个输出变量: 在多元线性回归的情况下,输入变量不止一个,而输出变量仍为…
这个自定义损失函数的背景:(一般回归用的损失函数是MSE, 但要看实际遇到的情况而有所改变) 我们现在想要做一个回归,来预估某个商品的销量,现在我们知道,一件商品的成本是1元,售价是10元. 如果我们用均方差来算的话,如果预估多一个,则损失一块钱,预估少一个,则损失9元钱(少赚的). 显然,我宁愿预估多了,也不想预估少了. 所以,我们就自己定义一个损失函数,用来分段地看,当yhat 比 y大时怎么样,当yhat比y小时怎么样. (yhat沿用吴恩达课堂中的叫法)   import tensorf…
Hinge损失函数主要用来评估支持向量机算法,但有时也用来评估神经网络算法.下面的示例中是计算两个目标类(-1,1)之间的损失.下面的代码中,使用目标值1,所以预测值离1越近,损失函数值越小: # Use for predicting binary (-1, 1) classes # L = max(0, 1 - (pred * actual)) hinge_y_vals = tf.maximum(., . - tf.multiply(target, x_vals)) hinge_y_out =…
TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵 神经元模型:用数学公式比表示为:f(Σi xi*wi + b), f为激活函数 神经网络 是以神经元为基本单位构成的 激活函数:引入非线性激活因素,提高模型的表达能力 常用的激活函数有relu.sigmoid.tanh等 (1)激活函数relu:在Tensorflow中,用tf.nn.relu()表示 (2)激活函数sigmoid:在Tensorflow中,用tf.nn.sigmoid()表示 (3)激活函数tanh…
L2正则损失函数(即欧拉损失函数),L2正则损失函数是预测值与目标函数差值的平方和.L2正则损失函数是非常有用的损失函数,因为它在目标值附近有更好的曲度,并且离目标越近收敛越慢: # L = (pred - actual)^2 l2_y_vals = tf.square(target - x_vals) l2_y_out = sess.run(l2_y_vals) L1正则损失函数(即绝对值损失函数).与L2正则损失函数对差值求平方差不同的是,L1正则损失函数对差值求绝对值.L1正则在目标附近不…
git: https://github.com/linyi0604/MachineLearning/tree/master/07_tensorflow/ import tensorflow as tf from numpy.random import RandomState ''' 模拟一个回归案例 自定义一个损失函数为: 当真实值y_更大的时候 loss = a(y_ - y) 当预测值y更大的时候 loss = b(y - y_) loss_less = 10 loss_more = 1 l…
经典的损失函数----交叉熵 1 交叉熵: 分类问题中使用比较广泛的一种损失函数, 它刻画两个概率分布之间的距离 给定两个概率分布p和q, 交叉熵为: H(p, q) = -∑ p(x) log q(x) 当事件总数是一定的时候, 概率函数满足:   任意x  p(X = x) ∈[0, 1] 且 Σ p(X=x) = 1 也就是说 所有时间发生的概率都是0到1 之间 , 且总有一个时间会发生,概率的和就为1. 2 tensorflow中softmax: softmax回归可以作为学习算法来优化…
深度学习:两个重要特性:多层和非线性 线性模型:任意线性模型的组合都是线性模型,只通过线性变换任意层的全连接神经网络与单层神经网络没有区别. 激活函数:能够实现去线性化(神经元的输出通过一个非线性函数). 多层神经网络:能够解决异或问题,深度学习有组合特征提取的功能. 使用激活函数和偏置项的前向传播算法 import tensorflow as tf a = tf.nn.relu(tf.matmul(x,w1) + biases1) y = tf.nn.relu(tf.matmul(a,w2)…
''' Created on Apr 20, 2017 @author: P0079482 ''' import tensorflow as tf #获取一层神经网络边上的权重,并将这个权重的L2正则化损失加入名称为'losses'的集合中 def get_weight(shape,lambda1): #生成一个变量 var = tf.Variable(tf.random_normal(shape),dtype=tf.float32) #add_to_collection函数将这个新生成变量的L…
import tensorflow as tf from numpy.random import RandomState batch_size = 8 x = tf.placeholder(tf.float32, shape=(None, 2), name="x-input") y_ = tf.placeholder(tf.float32, shape=(None, 1), name='y-input') w1= tf.Variable(tf.random_normal([2, 1],…
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只是机器学习的一分支领域,它更强调从连续的层中进行学习,这种层级结构中的每一层代表不同程序的抽象,层级越高,抽象程度越大.这些层主要通过神经网络的模型学习得到的,最大的模型会有上百层之多.而最简单的神经网络分为输入层,中间层(中间层往往会包含多个隐藏层),输出层.下面几篇文章将分别从前馈神经网络 FNN.卷积神…
一.误差值 度量两个张量或者一个张量和零之间的损失误差,这个可用于在一个回归任务或者用于正则的目的(权重衰减). l2_loss tf.nn.l2_loss(t, name=None) 解释:这个函数的作用是利用 L2 范数来计算张量的误差值,但是没有开方并且只取 L2 范数的值的一半,具体如下: output = sum(t ** 2) / 2 输入参数: t: 一个Tensor.数据类型必须是一下之一:float32,float64,int64,int32,uint8,int16,int8,…
Fork版本项目地址:SSD 一.损失函数介绍 SSD损失函数分为两个部分:对应搜索框的位置loss(loc)和类别置信度loss(conf).(搜索框指网络生成的网格) 详细的说明如下: i指代搜索框序号,j指代真实框序号,p指代类别序号,p=0表示背景, 中取1表示此时第i个搜索框和第j个类别框IOU大于阈值,此时真实框中对象类别为p. cip表示第i个搜索框对应类别p的预测概率. 二.分类损失函数 有了上图的分析,我们可以看具体实现了,首先我们看Lconf部分的计算,其分为最大化第一个累加…
Softmax交叉熵损失函数(Softmax cross-entropy loss)是作用于非归一化的输出结果只针对单个目标分类的计算损失.通过softmax函数将输出结果转化成概率分布,然后计算真值概率分布的损失: # Softmax entropy loss # L = -actual * (log(softmax(pred))) - (1-actual)(log(1-softmax(pred))) unscaled_logits = tf.constant([[1., -3., 10.]]…
import numpy as np import tensorflow as tf y_pred = np.array([[1], [2], [3]],dtype=np.float32) y_real = np.array([[1], [1], [1]]) bias = np.array([1,2,3,4],dtype=np.float32) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) Input…
import os import tab import tensorflow as tf from numpy.random import RandomState print "hello tensorflow 4.1" batch_size = 8 x = tf.placeholder(tf.float32,shape=(None,2),name='x-input') y_ = tf.placeholder(tf.float32,shape=(None,1),name='y-inpu…
#coding:utf-8 __author__ = 'similarface' import tensorflow as tf sess=tf.Session() #max(features, 0) print(sess.run(tf.nn.relu([-3,3,10]))) #min(max(features, 0), 6) print(sess.run(tf.nn.relu6([-3., 3., 10.]))) #1/(1+exp(-x)) print(sess.run(tf.nn.sig…
激活函数 各激活函数曲线对比 常用激活函数: tf.sigmoid() tf.tanh() tf.nn.relu() tf.nn.softplus() tf.nn.softmax() tf.nn.dropout() tf.nn.elu() import numpy as np import matplotlib.pyplot as plt from scipy.misc import derivative def sigmoid(x): y = 1 / (1 + np.exp(-x)) retu…
1.分类问题(交叉熵): (1)模型: (2)代码1: 其中,tf.clip_by_value是将一个张量的数值限制在一个范围之内,若小于1e-10则赋值为1e-10,若大于1.0则赋值为1,这样避免出现log0这种错误或大于1的概率. reduce_mean()函数是取对一个batch的交叉熵取平均运算.reduce_mean计算之前得到的结果是一个n×m的二维矩阵[每一个样本的每一类别交叉熵],其中n为一个batch中样本数量,m为分类的类别数量.交叉熵模型中应将每行中的m个结果相加得到所有…
每次都是看了就忘,看了就忘,从今天开始,细节开始,推一遍交叉熵. 我的第一篇CSDN,献给你们(有错欢迎指出啊). 一.什么是交叉熵 交叉熵是一个信息论中的概念,它原来是用来估算平均编码长度的.给定两个概率分布p和q,通过q来表示p的交叉熵为: 注意,交叉熵刻画的是两个概率分布之间的距离,或可以说它刻画的是通过概率分布q来表达概率分布p的困难程度,p代表正确答案,q代表的是预测值,交叉熵越小,两个概率的分布约接近. 那么,在神经网络中怎样把前向传播得到的结果也变成概率分布呢?Softmax回归就…
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输入如下代码: from __future__ import absolute_import # 绝对导入 from __future__ import division # 精确除法,/是精确除,//是取整除 from __future__ import print_function # 打印函数…
前面基本上把 TensorFlow 的在图像处理上的基础知识介绍完了,下面我们就用 TensorFlow 来搭建一个分类 cifar10 的神经网络. 首先准备数据: cifar10 的数据集共有 6 万幅 32 * 32 大小的图片,分为 10 类,每类 6000 张,其中 5 万张用于训练, 1 万张用于测试.数据集被分成了5 个训练的 batches 和 1 个测试的 batch.每个 batch 里的图片都是随机排列的.官网上提供了三个版本的下载链接,分别是 Python 版本的,Mat…
学习深度学习,首先从深度学习的入门MNIST入手.通过这个例子,了解Tensorflow的工作流程和机器学习的基本概念. 一  MNIST数据集 MNIST是入门级的计算机视觉数据集,包含了各种手写数字的图片.在这个例子中就是通过机器学习训练一个模型,以识别图片中的数字. MNIST数据集来自 http://yann.lecun.com/exdb/mnist/ Tensorflow提供了一份python代码用于自动下载安装数据集.Tensorflow官方文档中的url打不开,在CSDN上找到了一…
欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者 :董超 上一篇文章我们介绍了 MxNet 的安装,但 MxNet 有个缺点,那就是文档不太全,用起来可能是要看源代码才能理解某个方法的含义,所以今天我们就介绍一下 TensorFlow,这个由谷歌爸爸出品的深度学习框架,文档比较全-以后的我们也都使用这个框架- 0x00 概要 TensorFlow是谷歌爸爸出的一个开源机器学习框架,目前已被广泛应用,谷歌爸爸出品即使性能不是最强的(其实性能也不错),但…
作者:桂. 时间:2017-04-21  21:11:23 链接:http://www.cnblogs.com/xingshansi/p/6743780.html 前言 看到最近大家都在用Tensorflow,一查才发现火的不行.想着入门看一看,Tensorflow使用手册第一篇是基于MNIST的手写数字识别的,用到softmax regression,而这个恰好与我正在看的<统计信号处理>相关.本文借此梳理一下: 1)罗杰斯特回归 2)Softmax Regression 3)基于Tenso…
FaceRank-人脸打分基于 TensorFlow 的 CNN 模型 隐私 因为隐私问题,训练图片集并不提供,稍微可能会放一些卡通图片. 数据集 130张 128*128 张网络图片,图片名: 1-3.jpg 表示 分值为3 的第3 张图. 你可以把符合这个格式的图片放在 resize_images 来训练模型. 模型 人脸打分基于 TensorFlow 的 CNN 模型 代码参考 : https://github.com/aymericdamien/TensorFlow-Examples/b…
系统架构.自底向上,设备层.网络层.数据操作层.图计算层.API层.应用层.核心层,设备层.网络层.数据操作层.图计算层.最下层是网络通信层和设备管理层.网络通信层包括gRPC(google Remote Procedure Call Protocol)和远程直接数据存取(Remote Direct Memory Access,RDMA),分布式计算需要.设备管理层包手包括TensorFlow分别在CPU.GPU.FPGA等设备上的实现.对上层提供统一接口,上层只需处理卷积等逻辑,不需要关心硬件…