洛谷P2604 网络扩容 拆点+费用流】的更多相关文章

原题链接 这题貌似比较水吧,最简单的拆点,直接上代码了. #include <bits/stdc++.h> using namespace std; #define N 1000 #define M 5000 #define INF 0x3f3f3f3f #define mp make_pair #define pii pair<int, int> #define pb push_back int n, m, K, S, T; int d[2*N+5], vis[2*N+5], a…
洛谷P4014 分配问题[最小/大费用流]题解+AC代码 题目描述 有 n 件工作要分配给 n 个人做.第 i 个人做第 j 件工作产生的效益为c ij. 试设计一个将 n 件工作分配给 n 个人做的分配方案,使产生的总效益最大. 输入格式: 文件的第 1 行有 1 个正整数 n,表示有 n 件工作要分配给 n 个人做.接下来的 n 行中,每行有 n 个整数c ij,表示第 i 个人做第 j 件工作产生的效益为c ij . 输出格式: 两行分别输出最小总效益和最大总效益. 输入样例 5 2 2…
传送门 洛谷 Solution 考虑把每一个修车工人拆成\(n\)个点,那么考虑令\(id(i,j)\)为第\(i\)个工人倒数第\(j\)次修车. 然后就可以直接跑费用流了!!! 代码实现 /* mail: mleautomaton@foxmail.com author: MLEAutoMaton This Code is made by MLEAutoMaton */ #include<stdio.h> #include<stdlib.h> #include<string…
洛谷 P4016负载平衡问题 P4014 分配问题[费用流]题解+AC代码 负载平衡问题 题目描述 GG 公司有n个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n 个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬运. 输入格式: 文件的第 11 行中有 11 个正整数 n,表示有 n 个仓库. 第 22 行中有 n 个正整数,表示 n 个仓库的库存量. 输出格式: 输出最少搬运量. 输入样例 5 17 9 14 16 4 输出样例 11 说明 1001…
题目链接:https://www.luogu.org/problemnew/show/P4012 洛谷 P4012 深海机器人问题 输入输出样例 输入样例#1: 1 1 2 2 1 2 3 4 5 6 7 2 8 10 9 3 2 0 0 2 2 2 输出样例#1: 42 说明 题解:建图方法如下: 对于矩阵中的每个点,向东.向北分别与其相邻点都要连两条边(重边): 1)容量为1,费用为该边价值的边: 2)容量为INF,费用为0的边(因为多个深海机器人可以在同一时间占据同一位置). 对于每个起点…
题意 题目链接 Sol 这题能想到费用流就不难做了 从S向(1, 1)连费用为0,流量为K的边 从(n, n)向T连费用为0,流量为K的边 对于每个点我们可以拆点限流,同时为了保证每个点只被经过一次,需要拆点. 对于拆出来的每个点,在其中连两条边,一条为费用为点权,流量为1,另一条费用为0,流量为INF 相邻两个点之间连费用为0,流量为INF的边. 跑最大费用最大流即可 #include<bits/stdc++.h> #define Pair pair<int, int> #def…
传送门 完了这题好厉害……字符串什么的好麻烦…… 要求从$1$到$n$的路径,不重复,经过边数最多 每一个点拆成两个,$A_i,B_i$,然后$A_i$到$B_i$连容量为$1$,费用为$1$的边,保证每个点只被选一次 然后$1$和$n$的话要容量为$2$ 然后有连边的话,$B_i$向$A_j$连边,容量$1$,费用$1$ 要选的点最多,那么就是要费用最大,所以跑一个最大费用流 然后找方案的话,直接dfs,然后正着和倒着输出 有几个细节,写在代码里了 //minamoto #include<io…
传送门 和深海机器人问题差不多……看到有的大佬是用dp过的,强无敌…… 考虑一下,把每一个点拆点,分别是$A_i$和$B_i$,连一条容量为$inf$,费用为$0$的边,表示可以随便走.如果有石头,再连一条边,容量为$1$,费用为$1$,表示只能走一次,且有$1$的价值.然后套路的建一个超级源和超级汇之后跑一个最大费用流即可 至于如何输出方案,可以一遍$dfs$,每一次只选一条边,然后判断一下这条边被选的次数是否大于等于反向边的流量,如果是说明已经不能再选,然后去选别的边 //minamoto…
传送门 两个感受:码量感人……大佬nb…… 规则一:$m$条路径都不相交,那么每一个点只能经过一次,那么考虑拆点,把每一个点拆成$A_{i,j}$和$B_{i,j}$,然后两点之间连一条容量$1$,费用该点本身数值的边,表明这个点只能被选一次,然后每一个点的$B$向它能到达的点的$A$连边,表明能从这个点到另一个点,容量随意,费用$0$,然后源点向第一排所有点的$A$连边,最后一排所有点的$B$向汇点连边,都是容量随意,费用$0$,然后跑一个最大费用流即可 规则二:每一个点可以被选多次,那么不用…
原来这种题的解法是费用流. 从一个方格的左上走到右下,最多走k次,每个数最多拿走一次. 每次走动的流量设为1,起始点拆点成限制流量k. 每个点拆成两条路,一条路限制流量1,费用为价值相反数.另一条路无限流量. 跑一遍费用流. #include<bits/stdc++.h> using namespace std; +; ; const int INF=0x3f3f3f3f; struct Edge{ int to,next,cap,flow,cost; }edge[MAXM]; int hea…