论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低层视觉问题,提出了一般性的用于解决低层视觉问题的对偶卷积神经网络.作者认为,低层视觉问题,如常见的有超分辨率重建.保边滤波.图像去雾和图像去雨等,这些问题经常涉及到估计目标信号的两个成分:结构和细节.因此,文章提出DualCNN,它包含两个平行的分支来分别恢复结构和细节信息. 具体内容参见https…
5 DyREP:Learning Representations Over Dynamic Graphs link:https://scholar.google.com/scholar_url?url=https://par.nsf.gov/servlets/purl/10099025&hl=zh-CN&sa=X&ei=kIF4YrmVJ-OM6rQPxfOKUA&scisig=AAGBfm3I4EpwNkRLc5xhuaLEs47V0XWOzA&oi=schola…
Learning Visual Question Answering by Bootstrapping Hard Attention Google DeepMind  ECCV-2018   2018-08-05 19:24:44 Paper:https://arxiv.org/abs/1808.00300  Introduction: 本文尝试仅仅用 hard attention 的方法来抠出最有用的 feature,进行 VQA 任务的学习. Soft Attention: Existing…
  End-to-End Learning of Action Detection from Frame Glimpses in Videos  CVPR 2016  Motivation:    本文主要是想借助空间的 attention model 来去协助进行行人识别的工作.作者认为 long, read-world videos 是一个非常具有挑战的视觉问题.算法必须推理出是否出现了某个 action, 并且还要在时间步骤上推出出现在什么时刻.大部分的工作都是通过构建 frame-lev…
转载请注明出处:https://www.cnblogs.com/White-xzx/ 原文地址:https://arxiv.org/abs/1702.05891 Caffe-code:https://github.com/zhufengx/SRN_multilabel 如有不准确或错误的地方,欢迎交流~ 空间正则化网络(Spatial Regularization Network, SRN),学习所有标签间的注意力图(attention maps),并通过可学习卷积挖掘标签间的潜在关系,结合正则…
基于Attention的知识图谱关系预测 论文地址 Abstract 关于知识库完成的研究(也称为关系预测)的任务越来越受关注.多项最新研究表明,基于卷积神经网络(CNN)的模型会生成更丰富,更具表达力的特征嵌入,因此在关系预测上也能很好地发挥作用.但是这些知识图谱的嵌入独立地处理三元组,因此无法覆盖和收集到三元组周围邻居隐含着的复杂隐藏信息.为此,作者提出了一种新颖的基于注意力的特征嵌入方法,该方法可以捕获任何给定实体的邻居中的实体和关系特征. Introduction 最新的关系预测方法主要…
首先这是2018年一篇关于概念漂移综述的论文[1]. 最新的研究内容包括 (1)在非结构化和噪声数据集中怎么准确的检测概念漂移.how to accurately detect concept drift in unstructured and noisy datasets (2)怎么用一种可解释的方法来定量理解概念漂移.how to quantitatively understand concept drift in a explainable way (3)如何有效的结合相关知识和概念漂移.…
本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但传统的seq2seq存在很多问题.本文就提出了两个问题: 1)传统的seq2seq模型倾向于生成安全,普适的回答,例如“I don’t know what you are talking about”.为了解决这个问题,作者在更早的一篇文章中提出了用互信息作为模型的目标函数.具体见A Diversi…
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于知网资源的词嵌入学习模型,在通用的中文词嵌入评测数据集上进行了评测,取得了较好的结果. 作者简介 该论文选自 ACL 2017,是清华大学孙茂松刘知远老师组的成果.论文的两名共同第一作者分别是牛艺霖和谢若冰. 牛艺霖,清华本科生. 谢若冰,清华研究生(2014-2017),清华本科生(2010-20…
 论文阅读:Face Recognition: From Traditional to Deep Learning Methods  <人脸识别综述:从传统方法到深度学习>     一.引言     1.探索人脸关于姿势.年龄.遮挡.光照.表情的不变性,通过特征工程人工构造feature,结合PCA.LDA.支持向量机等机器学习算法.     2.流程 人脸检测,返回人脸的bounding box 人脸对齐,用2d或3d的参考点,去对标人脸 人脸表达,embed 人脸匹配,匹配分数 二.人脸识…