转载请注明出处:http://blog.csdn.net/zhoubin1992/article/details/46910079 1 SAT问题描写叙述 命题逻辑中合取范式 (CNF) 的可满足性问题 (SAT)是当代理论计算机科学的核心问题, 是一典型的NP 全然问题.在定义可满足性问题SAT之前,先引进一些逻辑符号. 一个 SAT 问题是指: 对于给定的 CNF 是否存在一组关于命题变元的真值指派使A为真. 显然,如A为真,则CNF的每一个子句中必有一个命题变元为1(真). 2 遗传算法…
转载请注明出处:http://blog.csdn.net/zhoubin1992/article/details/46453761 ------------------------------------------------------ 1 SAT问题描写叙述 命题逻辑中合取范式 (CNF)的可满足性问题 (SAT)是当代理论计算机科学的核心问题,是一典型的NP全然问题.在定义可满足性问题SAT之前,先引进一些逻辑符号. watermark/2/text/aHR0cDovL2Jsb2cuY3…
转载请注明出处:http://blog.csdn.net/zhoubin1992/article/details/46440389 近期梳理,翻出了当年高级算法课程做的题目.禁忌搜索算法解决3SAT问题. 吐槽:数学符号怎样在编辑器里打出来啊,为了保留符号,我直接截图了. 1 SAT问题描写叙述 定理4.4.1: 赋值v为使CNF可满足的充要条件是f(x1,x2,-,xm)达到最小值0. 2  禁忌搜索算法 禁忌搜索算法是在局部搜索的过程中引进了贪心选择机制.并利用禁忌表改动邻域,通过构造的候选…
前言&&为什么要学模拟退火 最近一下子学了一大堆省选算法,所以搞一个愉快一点的东西来让娱乐一下 其实是为了骗到更多的分,然后证明自己的RP. 说实话模拟退火是一个集物理与IT多方面知识与一身的高级随机化算法 所以更应该好好学了 PS:本文大部分内容参考rvalue大佬的博客,在本蒟蒻学习的过程过程中起到了极大的帮助. 什么是模拟退火&&模拟退火可以干什么 模拟退火算法(Simulate Anneal,SA)是一种通用概率演算法,用来在一个大的搜寻空间内找寻命题的最优解.模拟…
本文忽略了对于模拟退火的算法的理论讲解,读者可参考相关的博文或者其他相关资料,本文着重于算法的实现: /***************************************************************************** ** Copyright: NEW NEU laboratory ** File name: SA_工作指派问题 ** Description:模拟退火算法解决工作指派问题 ** Author: 1702--GCJ ** Version:…
3680: 吊打XXX Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 3192  Solved: 1198[Submit][Status][Discuss] Description gty又虐了一场比赛,被虐的蒟蒻们决定吊打gty.gty见大势不好机智的分出了n个分身,但还是被人多势众的蒟蒻抓住了.蒟蒻们将 n个gty吊在n根绳子上,每根绳子穿过天台的一个洞.这n根绳子有一个公共的绳结x.吊好gty后蒟蒻们发现…
0 引言 模拟退火算法是用来解决TSP问题被提出的,用于组合优化. 1 原理 一种通用的概率算法,用来在一个打的搜索空间内寻找命题的最优解.它的原理就是通过迭代更新当前值来得到最优解.模拟退火通常使用均匀抽样的方式,得到区间上的N个状态,以各个状态点目标值的方差作为初始温度. 2 程序包 GenSA: GenSA(par, fn, lower, upper, control=list(), ...) 参数: par:向量.包含优化对象的初始值,默认NULL,一般算法会自动产生默认值. fn:最小…
题目大意:原题链接 给出指定的区域,以及平面内的点集,求出一个该区域内一个点的坐标到点集中所有点的最小距离最大. 解题思路:一开始想到用随机化算法解决,但是不知道如何实现.最后看了题解才知道原来是要用模拟退火算法解决. 不过个人感觉这个算法的实现过程中仍然采用了随机化算法.二者均属于概率算法.  参考链接 Point Goto_Rand_Dir(double key,Point temp)函数中,Point temp必须得定义在参数中,不能定义在函数内部, 否则temp没有初始值,无法进行后面的…
模拟退火算法来源于固体退火原理,更多的化学物理公式等等这里不再废话,我们直接这么来看 模拟退火算法简而言之就是一种暴力搜索算法,用来在一定概率下查找全局最优解 找的过程和固体退火原理有所联系,一般来讲,就是设置应该初始温度T(通常为100),一个退火的系数K(通常为0.98),一个退火的结束温度T1(通常为1e-8) 每进行一次查找,T = T * K 如果T = T1,查找停止,(即固体退火完成) 这里以POJ2420和HDU1109为例 POJ2420题目地址: http://poj.org…
模拟退火的基本思想: (1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L (2) 对k=1,……,L做第(3)至第6步: (3) 产生新解$S\prime $ (4) 计算增量$\Delta t\prime  = C\left( {S\prime } \right) - C\left( S \right)$,其中$C\left( S \right)$为评价函数 (5) 若$\Delta t\prime  < 0$则接受$S\prime $作为新的当前解,…
模拟退火算法SA原理及python.java.php.c++语言代码实现TSP旅行商问题,智能优化算法,随机寻优算法,全局最短路径 模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis等人于1953年提出.1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域.来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温…
1.最优化与线性规划 最优化问题的三要素是决策变量.目标函数和约束条件. 线性规划(Linear programming),是研究线性约束条件下线性目标函数的极值问题的优化方法,常用于解决利用现有的资源得到最优决策的问题. 简单的线性规划问题可以用 Lingo软件求解,Matlab.Python 中也有求解线性规划问题的库函数或求解器,很容易学习和使用,并不需要用模拟退火算法.但是,由一般线性规划问题所衍生的整数规划.混合规划.0/1规划.二次规划.非线性规划.组合优化问题,则并不是调用某个库函…
模拟退火算法的原理模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小.根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数.用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制…
这篇文章是之前写的智能算法(遗传算法(GA).粒子群算法(PSO))的补充.其实代码我老早之前就写完了,今天恰好重新翻到了,就拿出来给大家分享一下,也当是回顾与总结了. 首先介绍一下模拟退火算法(SA).模拟退火算法(simulated annealing,SA)算法最早是由Metropolis等人提出的.其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性.模拟退火算法是一种通用的优化算法,其物理退火过程由以下三部分组成: (1)加温过程 (2)等温过程 (3)冷却过程 其中加…
Ellipsoid Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 648    Accepted Submission(s): 194 Special Judge Problem Description Given a 3-dimension ellipsoid(椭球面) your task is to find the minima…
1.基本概念 模拟退火算法(Simulated Annealing,SA)是一种模拟固体降温过程的最优化算法.其模拟的过程是首先将固体加温至某一温度,固体内部的粒子随温度上升慢慢变为无序的状态,内能增大,然后让其慢慢冷却,温度下降时,内部的粒子慢慢趋于有序,达到一种平衡态,最后达到常温时成为基态,此时内能减为最小,算法模拟这样一个过程期望能达到最优化的目的. 模拟退火算法最早是由kirkpatrick等人应用于组合优化领域,它是基于Monte-Carlo迭代求解策略的一种随机寻优算法.算法从某一…
题目链接: A Star not a Tree? Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5219   Accepted: 2491 Description Luke wants to upgrade his home computer network from 10mbs to 100mbs. His existing network uses 10base2 (coaxial) cables that allo…
题目链接: Run Away Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 7982   Accepted: 2391 Description One of the traps we will encounter in the Pyramid is located in the Large Room. A lot of small holes are drilled into the floor. They look c…
转载. 为方便理解, 在原博客的基础上加部分注释, 原博客地址:http://www.cnblogs.com/CsOH/p/6049117.html 今天终于用模拟退火过了一道题:CodeVS: P1344. 有 N ( <=20 ) 台 PC 放在机房内,现在要求由你选定一台 PC,用共 N-1 条网线从这台机器开始一台接一台地依次连接他们,最后接到哪个以及连接的顺序也是由你选定的,为了节省材料,网线都拉直.求最少需要一次性购买多长的网线.(说白了,就是找出 N 的一个排列 P1 P2 P3…
问题描述: 我方有一个基地,经度和纬度为( 70,40).假设我方飞机的速度为 1000 公里/小时. 我方派一架飞机从基地出发,侦察完敌方所有目标,再返回原来的基地.在敌方每一目 标点的侦察时间不计,求该架飞机所花费的时间(假设我方飞机巡航时间可以充分长). 这是一个旅行商问题.我们依次给基地编号为 1,敌方目标依次编号为 2, 3,…, 101, 最后我方基地再重复编号为 102(这样便于程序中计算). 距离矩阵 D = ( dij )102×102 , 其中 dij 表示表示 i, j 两…
Simulate Anneal模拟退火算法,是一种用于得到最优解的随机化算法. 如果可以打一手漂亮的随机化搜索,也许当你面对一筹莫展的神仙题时就有一把趁手的兵器了. 这篇题解将教你什么?SA的基本思路,什么时候能用SA. 标题是浅谈,所以本篇博客参杂了些许个人简介,若有疑问或异议,欢迎提出指正. 我也很感谢你们给出的建议,它们真的能让我变好.变强. 那么我们进入本篇正题. 1. 什么是模拟退火: 模拟退火是一种在广大的搜索空间寻找最优解的随机化算法.我们看名字就明白,这个算法实在模拟物理中退火的…
背景 现有个处理股票行情消息的系统,其架构如下: 由于数据量巨大,系统中启动了 15 个线程来消费行情消息.消息分配的策略较为简单:对 symbol 的 hashCode 取模,将消息分配给其中一个线程进行处理. 经过验证,每个线程分配到的 symbol 数量较为均匀,于是系统愉快地上线了. 运行一段时间后,突然收到了系统的告警,但此时并非消息峰值时间段.经过排查后,发现问题出现在 hash 函数上: 虽然每个线程被分配到的 symbol 数量较为均衡,但是部分热门 symbol 的报价消息量会…
1.模拟退火算法 模拟退火算法借鉴了统计物理学的思想,是一种简单.通用的启发式优化算法,并在理论上具有概率性全局优化性能,因而在科研和工程中得到了广泛的应用. 退火是金属从熔融状态缓慢冷却.最终达到能量最低的平衡态的过程.模拟退火算法基于优化问题求解过程与金属退火过程的相似性,以优化目标为能量函数,以解空间为状态空间,以随机扰动模拟粒子的热运动来求解优化问题([1] KIRKPATRICK,1988). 模拟退火算法结构简单,由温度更新函数.状态产生函数.状态接受函数和内循环.外循环终止准则构成…
1.整数规划问题 整数规划问题在工业.经济.国防.医疗等各行各业应用十分广泛,是指规划中的变量(全部或部分)限制为整数,属于离散优化问题(Discrete Optimization). 线性规划问题的最优解可能是分数或小数.但很多实际问题常常要求某些变量必须是整数解,例如:机器的台数.工作的人数或装货的车数.根据对决策变量的不同要求,整数规划又可以分为:纯整数规划.混合整数规划.0-1整数规划.混合0-1规划. 整数规划与线性规划的差别只在于增加了整数约束.初看起来似乎只要把线性规划得到的非整数…
1.EM算法 GMM算法是EM算法族的一个具体例子. EM算法解决的问题是:要对数据进行聚类,假定数据服从杂合的几个概率分布,分布的具体参数未知,涉及到的随机变量有两组,其中一组可观测另一组不可观测.现在要用最大似然估计得到各分布参数. 如果涉及的两组随机变量都是可观测的,问题就立即可以解决了,对似然函数求取最大值就能得到分布参数的解. EM算法先为所需求取的分布参数赋初值,使得能算出隐藏变量的期望:进而用隐藏变量的期望和可观测变量的数据对分布参数的似然函数求最大值,得到一组解从而更新分布参数.…
简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系列样本,Logistic回归问题属于监督型学习问题,样本中含有训练的特征以及标签,在Logistic回归的参数求解中,通过构造样本属于类别和类别的概率: 这样便能得到Logistic回归的属于不同类别的概率函数: 此时,使用极大似然估计便能够估计出模型中的参数.但是,如果此时的标签是未知的,称为隐变…
        暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程.         上图中有4个城市8条公路,公路上的数字表示这条公路的长短.请注意这些公路是单向的.我们现在需要求任意两个城市之间的最短路程,也就是求任意两个点之间的最短路径.这个问题这也被称为“多源最短路径”问题.         现在需要一个数据结构来存储图的信息,我们仍然可以用一个4*4的矩阵(二维数组e)来存储.比如…
转自:https://www.cnblogs.com/smile233/p/8303673.html 最短路径 ①在非网图中,最短路径是指两顶点之间经历的边数最少的路径. AE:1    ADE:2   ADCE:3   ABCE:3 ②在网图中,最短路径是指两顶点之间经历的边上权值之和最短的路径. AE:100   ADE:90   ADCE:60   ABCE:70 ③单源点最短路径问题 问题描述:给定带权有向图G=(V, E)和源点v∈V,求从v到G中其余各顶点的最短路径. 应用实例——计…
        暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程.         上图中有4个城市8条公路,公路上的数字表示这条公路的长短.请注意这些公路是单向的.我们现在需要求任意两个城市之间的最短路程,也就是求任意两个点之间的最短路径.这个问题这也被称为“多源最短路径”问题.         现在需要一个数据结构来存储图的信息,我们仍然可以用一个4*4的矩阵(二维数组e)来存储.比如…
#1068 : RMQ-ST算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho在美国旅行了相当长的一段时间之后,终于准备要回国啦!而在回国之前,他们准备去超市采购一些当地特产——比如汉堡(大雾)之类的回国. 但等到了超市之后,小Hi和小Ho发现者超市拥有的商品种类实在太多了——他们实在看不过来了!于是小Hi决定向小Ho委派一个任务:假设整个货架上从左到右拜访了N种商品,并且依次标号为1到N,每次小Hi都给出一段区间[L, R],小Ho要做的是选出标…