pandas 之 多层索引】的更多相关文章

In many applications, data may be spread across a number of files or datasets or be arranged in a form that is not easy to analyze. This chapter focuses on tools to help combine, and rearrange data. (在许多应用中,数据可以分布在多个文件或数据集中,或者以不易分析的形式排列. 本章重点介绍帮助组合和重…
多层索引是指在行或者列轴上有两个及以上级别的索引,一般表示一个数据的几个分项. 1.创建多层索引 1.1通过分组产生多层索引 1.2由序列创建 1.3由元组创建 1.4可迭代对象的笛卡尔积 1.5将DataFrame转为多层索引对象 2.多层索引操作 多层索引和单层索引一样,但在它也有一些特定的操作,我们在操作多层索引时需要熟练掌握,以后更加灵活地运用. 2.1生成数据 2.2索引信息 2.3查看层级 2.4索引内容 2.5排序 3.数据查询 多层索引组成的数据相对来说复杂一点,在确定需求后我们…
pandas学习(创建多层索引.数据重塑与轴向旋转) 目录 创建多层索引 数据重塑与轴向旋转 创建多层索引 隐式构造 Series 最常见的方法是给DataFrame构造函数的index参数传递两个或更多的数组,Series也可以创建多层索引. s = Series(np.random.randint(0,150,size=6),index=[['a','a','b','b','c','c'],['期中','期末','期中','期末','期中','期末']]) # 输出 a 期中 59 期末 4…
  1 创建多层索引     1)隐式构造         最常见的方法是给DataFrame构造函数的index参数传递两个或更多的数组           · Series也可以创建多层索引             一般情况下,两层索引就够用了       2)显式构造 pd.MultiIndex            · 使用数组               · 使用tuple             · 使用product     最简单,推荐使用     2 对DataFrame列同样…
Pandas层次化索引 1. 创建多层索引 隐式索引: 常见的方式是给dataframe构造函数的index参数传递两个或是多个数组 Series也可以创建多层索引 Series多层索引 B =Series(np.random.randint(0,150,size=10),index=pd.MultiIndex.from_product([list("ABCDE"),["期中","期末"]])) B Dataframe多层索引的创建(推荐使用)…
# -*- coding: utf-8 -*- # Time : 2016/11/28 15:14 # Author : XiaoDeng # version : python3.5 # Software: PyCharm Community Edition import pandas as pd import numpy as np import matplotlib.pyplot as plt obj=pd.Series(np.arange(4.),index=['a','b','c','d…
import numpy as np import pandas as pd 引入 A basic kind of time series object in pandas is a Series indexed by timestamps, which is often represented external to pandas as Python string or datetime objects: from datetime import datetime dates = [ date…
重新索引会更改DataFrame的行标签和列标签. 可以通过索引来实现多个操作: 重新排序现有数据以匹配一组新的标签. 在没有标签数据的标签位置插入缺失值(NA)标记. import pandas as pd import numpy as np N=20 df = pd.DataFrame({ 'A': pd.date_range(start='2016-01-01',periods=N,freq='D'), 'x': np.linspace(0,stop=N-1,num=N), 'y': n…
Numpy的索引切片 索引 In [72]: arr = np.array([[[1,1,1],[2,2,2]],[[3,3,3],[4,4,4]]]) In [73]: arr Out[73]: array([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]) In [74]: arr.ndim Out[74]: 3 In [75]: arr.shape Out[75]: (2, 2, 3) In [76]: arr[0] #返回降低一个维度的数组…
pandas目录 1 简介 重置索引(reindex)可以更改原 DataFrame 的行标签或列标签,并使更改后的行.列标签与 DataFrame 中的数据逐一匹配.通过重置索引操作,您可以完成对现有数据的重新排序.如果重置的索引标签在原 DataFrame 中不存在,那么该标签对应的元素值将全部填充为 NaN. 2 重置行列标签 选取特定行.列. 示例:先构建数据 index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror'] df…