SparkStreaming流处理】的更多相关文章

一.Spark Streaming的介绍 1.       流处理 流式处理(Stream Processing).流式处理就是指源源不断的数据流过系统时,系统能够不停地连续计算.所以流式处理没有什么严格的时间限制,数据从进入系统到出来结果可能是需要一段时间.然而流式处理唯一的限制是系统长期来看的输出速率应当快于或至少等于输入速率.否则的话,数据岂不是会在系统中越积越多(不然数据哪去了)?如此,不管处理时是在内存.闪存还是硬盘,早晚都会空间耗尽的.就像雪崩效应,系统越来越慢,数据越积越多. 2.…
SparkStreaming Spark Streaming类似于Apache Storm,用于流式数据的处理.Spark Streaming有高吞吐量和容错能力强等特点.Spark Streaming支持的数据源有很多,例如:Kafka.Flume.Twitter.ZeroMQ和简单的TCP套接字等等.数据输入后可以用Spark的高度抽象操作如:map.reduce.join.window等进行运算.而结果也能保存在很多地方,如HDFS,数据库等. 特性 1.易用性 可以像编写离线批处理一样去…
本节课通过二个部分阐述SparkStreaming的理解: 一.解密SparkStreaming另类在线实验 二.瞬间理解SparkStreaming本质 Spark源码定制班主要是自己做发行版.自己动手改进Spark源码,通常在电信.金融.教育.医疗.互联网等领域都有自己不同的业务,如果Sprak官方版本没有你需要的业务功能,你自己可以定制.扩展Spark的功能,满足公司的业务需要. 选择SparkStreaming框架源码研究.二次开发的原因 1.Spark起初只有Spark Core基础框…
转自博客:http://www.tuicool.com/articles/FVBJBjN Spark1.0.0生态圈一览 Spark生态圈,也就是BDAS(伯克利数据分析栈),是伯克利APMLab实验室精心打造的,力图在算法(Algorithms).机器(Machines).人(People)之间通过大规模集成,来展现大数据应用的一个平台,其核心引擎就是Spark,其计算基础是弹性分布式数据集,也就是RDD.通过Spark生态圈,AMPLab运用大数据.云计算.通信等各种资源,以及各种灵活的技术…
      Spark生态圈,也就是BDAS(伯克利数据分析栈),是伯克利APMLab实验室精心打造的,力图在算法(Algorithms).机器(Machines).人(People)之间通过大规模集成,来展现大数据应用的一个平台,其核心引擎就是Spark,其计算基础是弹性分布式数据集,也就是RDD. 通过Spark生态圈,AMPLab运用大数据.云计算.通信等各种资源,以及各种灵活的技术方案,对海量不透明的数据进行甄别并转化为实用的信息.以供人们更好的理解世界.Spark生态圈已经涉及到机器学…
一.Storm概述 网址:http://storm.apache.org/ Apache Storm是一个免费的开源分布式实时计算系统.Storm可以轻松可靠地处理无限数据流,实现Hadoop对批处理所做的实时处理.Storm非常简单,可以与任何编程语言一起使用,并且使用起来很有趣! Storm有许多用例:实时分析,在线机器学习,连续计算,分布式RPC,ETL等.风暴很快:一个基准测试表示每个节点每秒处理超过一百万个元组.它具有可扩展性,容错性,可确保您的数据得到处理,并且易于设置和操作. St…
随着公司业务发展,对大数据的获取和实时处理的要求就会越来越高,日志处理.用户行为分析.场景业务分析等等,传统的写日志方式根本满足不了业务的实时处理需求,所以本人准备开始着手改造原系统中的数据处理方式,重新搭建一个实时流处理平台,主要是基于hadoop生态,利用Kafka作为中转,SparkStreaming框架实时获取数据并清洗,将结果多维度的存储进HBase数据库. 整个平台大致的框架如下: 操作系统:Centos7 用到的框架: 1. Flume1.8.0 2. Hadoop2.9.0 3.…
UpdateStateByKey 使用说明:维护key的状态. 使用注意:使用该算子需要设置checkpoint 使用示例: object UpdateStateByKeyTest { def main(args: Array[String]): Unit = { val conf=new SparkConf().setMaster("local[2]").setAppName("UpdateStateByKeyTest") val ssc=new Streamin…
1.安装并配置zk 2.安装并配置Kafka 3.启动zk 4.启动Kafka 5.创建topic [root@mini3 kafka]# bin/kafka-console-producer. --topic cyf-test 程序代码 package org.apache.spark import java.net.InetSocketAddress import org.apache.spark.HashPartitioner import org.apache.spark.SparkCo…
要完整去学习spark源码是一件非常不容易的事情,但是咱可以积少成多嘛~那么,Spark Streaming是怎么搞的呢? 本质上,SparkStreaming接收实时输入数据流并将它们按批次划分,然后交给Spark引擎处理生成按照批次划分的结果流: SparkStreaming提供了表示连续数据流的.高度抽象的被称为离散流的Dstream,可以使用kafka.Flume和Kiness这些数据源的输入数据流创建Dstream,也可以在其他Dstream上使用map.reduce.join.win…