题目链接戳这里 题目描述 有\(n\)件不同的商品,每件物品都有无限个,输出总体积为\([1,m]\)的方案数 思路 直接跑背包有\(30\) 考虑把每个物品的生成函数设出来,对于一件体积为\(v\)的物品: \[f(x)=1+x^v+x^{2v}+\cdots +x^{kv}+\cdots \] 那么答案\(F(x)\)就是每个物品的\(f\)卷起来: \[F(x)=\prod\limits_{i=1}^{n}f_i(x)=\prod\limits_{i=1}^{n}\frac{1}{1-x^…
显然构造出生成函数,对体积v的物品,生成函数为1+xv+x2v+……=1/(1-xv).将所有生成函数乘起来得到的多项式即为答案,设为F(x),即F(x)=1/∏(1-xvi).但这个多项式的项数是Σvi级别的,无法直接分治FFT卷起来. 我们要降低多项式的次数,于是考虑取对数,化乘为加,得到lnF(x)=-Σln(1-xvi).只要对每个多项式求出ln加起来再exp回去即可. 考虑怎么对这个特殊形式的多项式求ln.对ln(1-xv)求导,得ln(1-xv)'=(1-xv)'/(1-xv)=-v…
完全背包方案计数问题的FFT优化.首先写成生成函数的形式:对重量为V的背包,它的生成函数为$\sum\limits_{i=0}^{+\infty}x^{Vi}=\frac{1}{1-x^{V}}$于是答案就是$\prod \frac{1}{1-x^{V_k}}$.直接做显然会超时,考虑使用ln将乘法变为加法.https://www.cnblogs.com/cjyyb/p/10132855.html #include<cmath> #include<cstdio> #include&…
题目链接:洛谷 题目大意:现在有$n$个物品,每种物品体积为$v_i$,对任意$s\in [1,m]$,求背包恰好装$s$体积的方案数(完全背包问题). 数据范围:$n,m\leq 10^5$ 这道题,看到数据范围就知道是生成函数.$$Ans=\prod_{i=1}^n\frac{1}{1-x^{v_i}}$$ 但是这个式子直接乘会tle,我们考虑进行优化. 看见这个连乘的式子,应该是要上$\ln$. $$Ans=\exp(\sum_{i=1}^n\ln(\frac{1}{1-x^{v_i}})…
传送门 同样是回过头来发现不会做了,要加深一下记忆. 思路 只要听说过生成函数的人相信第一眼都可以想到生成函数. 所以我们要求 \[ ans=\prod \sum_n x^{nV}=\prod \frac{1}{1-x^V} \] 也就是\(\prod (1-x^V)\). 但这玩意好像还是不会做,怎么办呢? 按照套路,可以先\(\ln\)一下,加起来,再\(\exp\)回去. 所以现在要求 \[ \sum \ln(1-x^V) \] -- -- -- 不会. 不会怎么办? 打表找规律! 经过打…
P4389 付公主的背包 题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装\(10^5\)大小的东西 付公主有\(n\)种商品,她要准备出摊了 每种商品体积为\(V_i\),都有\(10^5\)件 给定\(m\),对于\(s\in [1,m]\),请你回答用这些商品恰好装\(s\)体积的方案数 输入输出格式 输入格式: 第一行\(n,m\) 第二行\(V_1\sim V_n\) 输出格式: \(m\)行,第\(i\)行代表\(s=i\)时方案数,对\(998244353\)取…
题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装10^5105大小的东西 付公主有n种商品,她要准备出摊了 每种商品体积为Vi,都有10^5105件 给定m,对于s\in [1,m]s∈[1,m],请你回答用这些商品恰好装s体积的方案数 输入输出格式 输入格式: 第一行n,m 第二行V1~Vn 输出格式: m行,第i行代表s=i时方案数,对998244353取模 输入输出样例 输入样例#1: 2 4 1 2 输出样例#1: 1 2 2 3 说明 对于30%的数据,n<=300…
题目 传送门 解法 答案显然是\(n\)个形如\(\sum_{i \geq 1} x^{vi}\)的多项式的卷积 然而直接NTT的时间复杂度是\(O(nm\log n)\) 我们可以把每个多项式求\(\ln\)然后相加, 在\(\exp\)回去 我们设\(f(x) = \sum_{i \geq 1} x^{vi}\), \(g(x) = \ln(f(x))\) 我们知道\(f(x) = \frac{1}{1-x^v}\) 于是 \[ \begin{align} g'(x) &= \frac{f'…
题面 给定 n , k n,k n,k ,求长度为 n n n 逆序对个数为 k k k 的排列个数,对 1 e 9 + 7 \rm1e9+7 1e9+7 取模. 1 ≤ n , k ≤ 100   000 1\leq n,k\leq 100\,000 1≤n,k≤100000 . 题解 首先,不要看到逆序对就手忙脚乱,它其实是可控的. 令 d i d_i di​ 为第 i i i 个数前面比它大的数的个数,满足条件 d i ∈ [ 0 , i ) d_i\in[0,i) di​∈[0,i) .…
%%%dkw 话说这是个论文题来着... 考虑生成函数\(OGF\) 对于价值为\(v\)的物品,由于有\(10^5\)的件数,可以看做无限个 那么,其生成函数为\(x^0 + x^{v} + x^{2v} + ... = \frac{1}{1 - x^v}\) 我们所需的答案即\([x^n] \prod \frac{1}{1 - x^{v_i}}\) 只需考虑求出\(A = \prod \frac{1}{1 - x^{v_i}}\) 自然地想到取对数 \(In(A) = \sum In(\fr…
题目:https://www.luogu.org/problemnew/show/P4389 关于泰勒展开: https://blog.csdn.net/SoHardToNamed/article/details/80550935 https://www.cnblogs.com/guo-xiang/p/6662881.html 大概就是:\( f(x) = \sum\limits_{i=0}^{n}\frac{ f^{(i)}(x_0) }{i!}(x-x_0)^i +R_n\) 麦克劳林展开就…
正题 题目链接:https://www.luogu.com.cn/problem/P4389 题目大意 \(n\)种物品,第\(i\)种大小为\(v_i\),数量无限.对于每个\(s\in[1,m]\)求刚好填满\(s\)容量的方案数. \(1\leq n,m\leq 10^5\) 解题思路 统计和为一定值的方案数,好像可以生成函数做? 每种物品大小\(v\)有一个生成函数 \[F(x)=\sum_{i\geq 0}x^{i\times v}=\frac{1}{1-x^v} \] 然后所有生成函…
传送门 神仙题鸭!orz dkw 暴力就是完全背包 而完全背包可以和生成函数扯上关系,记第i种物品质量为\(a_i\),那么这种物品的生成函数\(G(i)=\sum_{j=0}^{\infty}x^{a_ij}\),最后体积为i的答案即为这n个生成函数的卷积的第i项系数 然而用卷积复杂度为\(O(mnlogm)\),还不如暴力.说道卷积,我就想起了可以把多项式先求\(ln\),然后加起来,最后求\(exp\).只不过每个函数求\(ln\)复杂度还是不行,我们打表发现\(lnG(i)=\sum_{…
题目传送门:洛谷 P4389. 题意简述: 有 \(n\) 个物品,每个物品都有无限多,第 \(i\) 个物品的体积为 \(v_i\)(\(v_i\le m\)). 问用这些物品恰好装满容量为 \(i\) 的背包的方案数,两个方案不同当且仅当存在某一个物品的选取数量不同. 你需要对 \(i\in [1,m]\) 回答,答案对 \(998,244,353\) 取模. 题解: 对于一个体积为 \(v\) 的物品,它装满容量为 \(x\) 的背包的方案数序列为 \(a_x=[v|x]\). 例如 \(…
题目 退役前抄一道生成函数快乐一下 就是让我们做一个完全背包,但是朴素的做法显然是\(O(nm)\)的 把每一个物品搞成一个多项式,显然这个多项式所有\(v_i\)的倍数箱为\(1\),剩下的为\(0\) 我们写成生成函数的话就是\(\frac{1}{1-x^{v_i}}\) 也就是我们我们要求的答案就是 \[\prod_{i=1}^n\frac{1}{1-x^{v_i}}\] 直接大力卷积是 \(O(nmlogn)\)的,好像还比暴力慢了一点 发现连乘并不是很好处理,考虑取一个\(\ln\)…
题意:n<=1e5,m<=1e5,跑n个物品1到m容量的完全背包. 考虑暴力的做法就是把一些1/(1+x^a)的多项式乘起来即可. 考虑优化,取一下ln,转化为加法,然后exp回去就好了.…
题目大意:有$n(n\leqslant10^5)$种物品,第$i$个物品体积为$v_i$,都有$10^5$件.给定$m(m\leqslant10^5)$,对于$s\in [1,m]$,请你回答用这些商品恰好装$s$体积的方案数 题解:(by Weng_weijie) 背包问题模板(误) 对每个物品构造生成函数$F(x)=\displaystyle\sum_{i=0}^{\infty}x^{vi}=\dfrac{1}{1-x^v}$ 然后所有相乘就得到答案(不会乘) 对每个多项式求$\ln$加起来…
题意:求一个较大的多重背包对于每个i的方案数,答案对998244353取模. 思路: 生成函数: 对于一个\(V\) 设: \(f(x) = \sum_{i=0}^{oo} x ^ {V * i} = {1 \over {1 - x ^ V}}\) 那么就是求这个生成函数的积. 首先将\(f(x)\)取\(ln\)为\(g(x)\),最后\(exp\)回去得到答案. \(g'(x) = {f'(x) \over f(x)} = (1 - x^V)\sum_{i = 1}^{oo}V * i *…
这个题太神辣- 暴力背包就能获得\(30\)分的好成绩...... \(60\)分不知道咋搞..... 所以直接看\(100\)分吧\(QwQ\) 用一点生成函数的套路,对于一个体积为\(v\)的物品,我们构造一个序列\(f_n = [v \mid n]\ (n \ge 0)\) 其生成函数\(F(x) = \sum\limits_{i=0}^{\infty} [v \mid i]x^i = \sum\limits_{i=0}^{\infty} x^{vi} = \frac{1}{1-x^v}\…
\(\mathcal{Description}\)   Link.   容量为 \(n\),\(m\) 种物品的无限背包,求凑出每种容量的方案数,对 \(998244353\) 取模.   \(n,m\le10^5\). \(\mathcal{Solution}\)   感觉货币系统是这道题的弱化版 qwq.   还有这个博客园对齐公式自动编号的 feature 怎么去掉啊--   对于大小为 \(v\) 的物品,有生成函数: \[G(x)=\sum_{i=0}^{+\infty}x^{iv}…
注意 初始化的时候要这样写 for(int i=1,x;i<=n;i++){ scanf("%d",&x); v[x]++; } for(int i=1;i<=m;i++){ if(v[i]){ for(int j=1;j<=m/i;j++) a[i*j]=(a[i*j]+1LL*v[i]*invx[j]%MOD)%MOD; } } 这样写的复杂度是调和级数(\(O(n\log n)\)) 不能这样写 for(int i=1;i<=n;i++){ sca…
luogu 显然这是个背包题 显然物品的数量是不用管的 所以考虑大小为\(v\)的物品可以装的体积用生成函数表示一下 \[ f(x)=\sum_{i=0}^{+\infty}x^{vi}=\frac{1}{1-x^v}\\ ans=\prod_{i=1}^{n}\frac{1}{1-x^{v_i}} \] 然而这样直接乘起来复杂度是\(O(mn\ log\ n)\) 然后套路,左右套上\(ln\)就可以化乘为加 \[ ln\ ans=\sum_{i=1}^{n}ln\ \frac{1}{1-x^…
传送门 神仙题-- 考虑计算三个部分:1.\(n\)个点的森林的数量,这个是期望的分母:2.\(n\)个点的所有森林中存在最短路的点对的最短路径长度之和:3.\(n\)个点的所有路径中存在最短路的点对的个数之和,这个是用来计算需要取到\(m\)的点对的数量. 对于1,这个就直接对着树的数量的EGF做多项式exp即可.因为点之间有序所以用EGF,\(n\)个点的树的数量由Cayley定理就是\(n^{n-2}\). 对于3,考虑枚举一个连通块大小,那么这种连通块大小的所有树的存在最短路的点对之和就…
Description: \(1<=n,k<=1e5,mod~1e9+7\) 题解: 考虑最经典的排列dp,每次插入第\(i\)大的数,那么可以增加的逆序对个数是\(0-i-1\). 不难得到生成函数: \(Ans=\prod_{i=0}^{n-1}(\sum_{j=0}^ix^j)[x^k]\) \(=\prod_{i=1}^{n}{1-x^i\over 1-x}[x^k]\) 分母是一个经典的生成函数: \({1\over 1-x}^n=(\sum_{i>=0}x^i)^n=\sum…
题目大意:给你两个多项式$f(x)$和$g(x)$,满足$f(x)=\prod\limits_{i=1}^{n}(a_i+1)$,$g(x)=\prod\limits_{i=1}^{m}(b_i+1)$. 现在给你一个多项式$h(x)$,满足$h(x)=\prod\limits_{i=1}^{n}\prod\limits_{j=1}^{m}(a_ib_j+1)$ 请输出多项式$h$的前$k$项,在模$998244353$意义下进行. 数据范围:$n,m≤10^5$. 我们现在有: $f(x)=\…
正题 题目链接:https://www.luogu.com.cn/problem/P5748 题目大意 求将\(n\)的排列分成若干个无序非空集合的方案. 输出答案对\(998244353\)取模. \(1\leq n\leq 10^5,1\leq T\leq 1000\) 解题思路 就是求划分数 分成\(i\)个集合的方案是\((e^x-1)^i\)所以答案的生成函数就是 \[\sum_{i=0}^{\infty}\frac{(e^x-1)^i}{i!} \] emmmmmmmmmmm...…
题目大意 有两棵 \(n\) 个点的树 \(T_1\) 和 \(T_2\). 你要给每个点一个权值吗,要求每个点的权值为 \([1,y]\) 内的整数. 对于一条同时出现在两棵树上的边,这条边的两个端点的值相同. 若 \(op=0\),则给你两棵树 \(T_1,T_2\),求方案数. 若 \(op=1\),则给你一棵树 \(T_1\),求对于所有 \(n^{n-2}\) 种 \(T_2\),方案数之和. 若 \(op=2\),则求对于所有的 \(T_1,T_2\),求方案数之和. \(n\leq…
题意 题目链接 Sol 多项式exp,直接套泰勒展开的公式 \(F(x) = e^{A(x)}\) 求个导\(F'(x) = A(x)\) 我们要求的就是\(G(f(x)) = lnF(x) - A(x)\)的零点. 然后把\(F(x)\)看做变量\(A(x)\)看做长度(什么鬼啊qwq) \(G'(F(x)) = \frac{1}{F(x)}\) 然后就可以牛顿迭代啦 \[F(x) = F_0(x) - \frac{G(F_0(x))}{G'(F_0(x))}\] \[F(x) = F_0(x…
P4388 付公主的矩形 前置芝士 \(gcd\)与欧拉函数 要求对其应用于性质比较熟,否则建议左转百度 思路 有\(n×m\)的矩阵,题目要求对角线经过的格子有\(N\)个, 设函数\(f(x,y)\)为矩阵\((x,y)\)对角线经过的格子 设\(gcd(n,m)=1\),对角线在矩形中不会经过任意一个格点,\(f(n,m)=n+m-1\) 那\(gcd(n,m)!=1\)呢?将这个矩阵拆除\(gcd(n,m)\)个相同的矩阵 其中\(gcd(n',m')=1\),则\(\dfrac{n}{…
题面: 为了排解心中的怒气,她造了大量的稻草人来发泄.每天付公主都会把一些稻草人摆成一个R∗C的矩形,矩形的每个方格上都有一个稻草人.然后她站在这个矩形的左上角,向矩形的右下角射箭.付公主的箭术过人,她能穿透任意多的稻草人.弓箭经过的方格上的稻草人难逃厄运,报废掉了.看着被毁坏的稻草人,付公主开心了一些. 但是制造稻草人需要大量的金钱,所以付公主不希望坏掉太多的稻草人,所以她每天都选择毁坏掉N个稻草人.付公主还是个喜新厌旧的人,她希望每天能看到一种不同的稻草人摆放矩形.矩形是可以旋转的,即R∗C…