Yanhua Mini ACDP authorize new function on BMW EGS ISN clearing.So here UOBDII want to share this step-by-step guide for you. Related Contents: Yanhua Mini ACDP Read BMW MSV80 DME ISN Yanhua ACDP Mini No Need Soldering BMW DME ISN Code Support List C…
Tomcat Clustering - A Step By Step Guide Apache Tomcat is a great performer on its own, but if you're expecting more traffic as your site expands, or are thinking about the best way to provide high availability, you'll be happy to know that Tomcat al…
Note: There is no need to install Jenkins on the slave machine. On your master machine go to Manage Jenkins > Manage Nodes. New Node --> Enter Node Name. Select Dumb Slave --> Press OK. Fill out the following: Set a number of executors (one or mo…
Note: There is no need to install Jenkins on the slave machine. On your master machine go to Manage Jenkins > Manage Nodes. New Node --> Enter Node Name. Select Dumb Slave --> Press OK. Fill out the following: Set a number of executors (one or mo…
Learning to use a good automotive OBD2 code reader is one of the best ways you can continually invest in the health of your car. In addition, it can help you in protecting hundreds or thousands of dollars in auto maintenance. The OBD2 scanner is the…
原创地址:http://www.cnblogs.com/jfzhu/p/4018153.html 转载请注明出处 (一)检查Customizations 从2011升级到2013有一些legacy feature是不再支持的了: CRM 4.0 plugin-ins CRM 4.0 client-side scripting CRM 4.0 custom workflow activities 2007 web service endpoint ISV folder support for cu…
http://www.behardware.com/art/lire/845/ --> Understanding 3D rendering step by step with 3DMark11 - BeHardware>> Graphics cards Written by Damien Triolet Published on November 28, 2011 URL: http://www.behardware.com/art/lire/845/ Page 1 Introduct…
先给出我所参考的两个链接: http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4 (AC神,数论帝  扩展Baby Step Giant Step解决离散对数问题) http://blog.csdn.net/a601025382s/article/details/11747747 Baby Step Giant Step算法:复杂度O( sqrt(C) ) 我是综合上面两个博客,才差不多懂得了该算法. 先给出AC神的方法: 原创帖…
高次同余方程 一般来说,高次同余方程分\(a^x \equiv b(mod\ p)\)和\(x^a \equiv b(mod\ p)\)两种,其中后者的难度较大,本片博客仅将介绍第一类方程的解决方法. 给定\(a,b,p\),其中\(gcd(a,p)=1\),求方程\(a^x \equiv b(mod\ p)\)的最小非负整数解. 普通分析和朴素算法 先介绍一下欧拉定理: 如果正整数\(a\),\(p\)互质,则\(a^{\phi(p)}\equiv1(mod\ p)\). 注意到题中所给的条件…
PyTorch in Action: A Step by Step Tutorial   PyTorch in Action: A Step by Step Tutorial Installation Guide Step 1, donwload the Miniconda and installing it on your computer. The reason why explain installing conda is that some of classmates don`t hav…