Spark数据本地性】的更多相关文章

Spark数据本地性 分布式计算系统的精粹在于移动计算而非移动数据,但是在实际的计算过程中,总存在着移动数据的情况,除非是在集群的所有节点上都保存数据的副本.移动数据,将数据从一个节点移动到另一个节点进行计算,不但消耗了网络IO,也消耗了磁盘IO,降低了整个计算的效率.为了提高数据的本地性,除了优化算法(也就是修改spark内存,难度有点高),就是合理设置数据的副本.设置数据的副本,这需要通过配置参数并长期观察运行状态才能获取的一个经验值. Spark中的数据本地性有三种: PROCESS_LO…
1.文件系统本地性 第一次运行时数据不在内存中,需要从HDFS上取,任务最好运行在数据所在的节点上: 2.内存本地性 第二次运行,数据已经在内存中,所有任务最好运行在该数据所在内存的节点上: 3.LRU置换 如果数据只缓存在内存中而并没有缓存到磁盘上,此时数据被置换出内存,则从HDFS上读取: 如果数据不仅缓存到内存而且还缓存到磁盘上,此时数据被置换出内存,则从磁盘上直接读取: BlockManage.scala putBlockInfo.synchronized { var marked =…
在分布式计算中,为了提高计算速度,数据本地性是其中重要的一环. 不过有时候它同样也会带来一些问题. 一.问题描述 在分布式计算中,大多数情况下要做到移动计算而非移动数据,所以数据本地性尤其重要,因此我们往往也是将hdfs和spark部署在相同的节点上,有些人可能会发现即使他已经这么做了,在spark的任务中的locality还是ANY,这说明所有的数据都是走的网络IO. 在没有没有shuffle的情况下,仅在数据读取阶段网络IO占用都很严重,可以看下ganglia的监控,最高峰出现在读取数据阶段…
一.什么是数据本地性(data locality) 大数据中有一个很有名的概念就是"移动数据不如移动计算",之所以有数据本地性就是因为数据在网络中传输会有不小的I/O消耗,如果能够想办法尽量减少这个I/O消耗就能够提升效率.那么如何减少I/O消耗呢,当然是尽量不让数据在网络上传输,即使无法避免数据在网络上传输,也要尽量缩短传输距离,这个数据需要传输多远的距离(实际意味着数据传输的代价)就是数据本地性,数据本地性根据传输距离分为几个级别,不在网络上传输肯定是最好的级别,其它级别划分依据传…
在分布式计算中,为了提高计算速度,数据本地性是其中重要的一环. 不过有时候它同样也会带来一些问题. 一.问题描述 在分布式计算中,大多数情况下要做到移动计算而非移动数据,所以数据本地性尤其重要,因此我们往往也是将hdfs和spark部署在相同的节点上,有些人可能会发现即使他已经这么做了,在spark的任务中的locality还是ANY,这说明所有的数据都是走的网络IO. 在没有没有shuffle的情况下,仅在数据读取阶段网络IO占用都很严重,可以看下ganglia的监控,最高峰出现在读取数据阶段…
本課主題 通过 Spark-shell 窥探程序运行时的状况 TaskScheduler 与 SchedulerBackend 之间的关系 FIFO 与 FAIR 两种调度模式彻底解密 Task 数据本地性资源分配源码实现 引言 TaskScheduler 是 Spark 整个调度的底层调度器,底层调度器是负责具体 Task 本身的运行的,所以豪无疑问的是一个至关重要的内容.希望这篇文章能为读者带出以下的启发: 了解 程序运行时具体创建的实例对象 了解 TaskScheduler 与 Sched…
本课主题 通过 Spark-shell 窥探程序运行时的状况 TaskScheduler 与 SchedulerBackend 之间的关系 FIFO 与 FAIR 两种调度模式彻底解密 Task 数据本地性资源分配源码实现 引言 TaskScheduler 是 Spark 整个调度的底层调度器,底层调度器是负责具体 Task 本身的运行的,所以豪无疑问的是一个至关重要的内容.希望这篇文章能为读者带出以下的启发: 了解 程序运行时具体创建的实例对象 了解 TaskScheduler 与 Sched…
Spark 数据倾斜解决方案 2017年03月29日 17:09:58 阅读数:382 现象       当你的应用程序发生以下情况时你该考虑下数据倾斜的问题了: 绝大多数task都可以愉快的执行,总有那么个别task比较慢.比如,假设有10000个task,其中9998个task都很快的给出了结果,还剩那两个慢的拖慢了整个应用,这种情况很常见. 原本能够正常执行的Spark作业,某天突然报出OOM(内存溢出)异常,这种情况比较少见. 为什么会出现数据倾斜发生? 在进行shuffle的时候,必须…
本文转发自技术世界,原文链接 http://www.jasongj.com/spark/skew/ Spark性能优化之道——解决Spark数据倾斜(Data Skew)的N种姿势  发表于 2017-02-28 |  更新于 2017-10-17 | 本文结合实例详细阐明了Spark数据倾斜的几种场景以及对应的解决方案,包括避免数据源倾斜,调整并行度,使用自定义Partitioner,使用Map侧Join代替Reduce侧Join,给倾斜Key加上随机前缀等. 摘要 本文结合实例详细阐明了Sp…
作者 | 柳密 阿里巴巴阿里云智能 ** 本文整理自<Serverless 技术公开课>,关注"Serverless"公众号,回复"入门",即可获取 Serverless 系列文章 PPT. 导读:本节课主要介绍如何在 Serverless Kubernetes 集群中低成本运行 Spark 数据计算.首先简单介绍下阿里云 Serverless Kubernetes 和 弹性容器实例 ECI 这两款产品:然后介绍 Spark on Kubernetes:…