基于Python的卷积神经网络和特征提取 用户1737318发表于人工智能头条订阅 224 在这篇文章中: Lasagne 和 nolearn 加载MNIST数据集 ConvNet体系结构与训练 预测和混淆矩阵 过滤器的可视化 Theano层的功能和特征提取 作者:Christian S.Peron 译者:刘帝伟 摘要:本文展示了如何基于nolearn使用一些卷积层和池化层来建立一个简单的ConvNet体系结构,以及如何使用ConvNet去训练一个特征提取器,然后在使用如SVM.Logistic…
​NOTES:现如今,芯片行业无比火热啊,无论是前景还是钱景,国家芯片战略的发布,公司四五十万的年薪,着实令人非常的向往,为了支持芯片设计者,集成了工作.科研.竞赛于一体的<基于 SoC 的卷积神经网络车牌识别系统设计>专栏项目,这是在一位海归教授的带领之下的整个团队辛勤耕耘的结晶,希望大家能够在理论结合实践的指导之下,不断地提高自己的数字芯片设计技术能力. 1.项目引言 工作求职:能够在简历上添加一笔较大的项目,集成了 AI.SoC.系统级.FPGA.ARM 以及 Verilog.C.Pyt…
本文是深度学习入门: 基于Python的实现.神经网络与深度学习(NNDL)以及动手学深度学习的读书笔记.本文将介绍基于Numpy的卷积神经网络(Convolutional Networks,CNN)的实现,本文主要重在理解原理和底层实现. 一.概述 1.1 卷积神经网络(CNN) 卷积神经网络(CNN)是一种具有局部连接.权重共享和平移不变特性的深层前馈神经网络. CNN利用了可学习的kernel卷积核(filter滤波器)来提取图像中的模式(局部和全局).传统图像处理会手动设计卷积核(例如高…
NOTES: 这是第三届全国大学生集成电路创新创业大赛 - Arm 杯 - 片上系统设计挑战赛(本人指导的一个比赛).主要划分为以下的 Top5 重点.难点.亮点.热点以及创新点:1.通过 Arm Cortex-M3 CPU 软核 IP 在 Xilinx Artix-7 纯 FPGA 平台上构建一个 SoC 片上系统,该系统一方面能够通过 HDMI 接口,在显示屏上实时显示 OV5640 摄像头所采集的车牌视频数据(比特流的生成是通过交叉编译的方式,即 Verilog 编译与 C 编译):2.该…
https://adeshpande3.github.io/adeshpande3.github.io/ https://blog.csdn.net/weiwei9363/article/details/79112872 https://blog.csdn.net/and_w/article/details/70336506 https://hackernoon.com/visualizing-parts-of-convolutional-neural-networks-using-keras-…
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid.softmax.tanh.relu.leakyrelu.elu.selu.softplus):https://www.cnblogs.com/xiximayou/p/127130…
# -*- coding: utf-8 -*- """ Created on Wed Nov 21 17:32:28 2018 @author: zhen """ import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('C:/Users/zhen/MNIST_data_…
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid.softmax.tanh.relu.leakyrelu.elu.selu.softplus):https://www.cnblogs.com/xiximayou/p/127130…
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数并没有多少要说的,根据公式定义好就行了,需要注意的是梯度公式的计算. import numpy as np # Collection of activation functions # Referenc…
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid.softmax.tanh.relu.leakyrelu.elu.selu.softplus):https://www.cnblogs.com/xiximayou/p/127130…