caffe arm】的更多相关文章

依赖库: sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler sudo apt-get install libopenblas-base libopenblas-dev sudo apt-get…
人工智能深度学习Caffe框架介绍,优秀的深度学习架构 在深度学习领域,Caffe框架是人们无法绕过的一座山.这不仅是因为它无论在结构.性能上,还是在代码质量上,都称得上一款十分出色的开源框架.更重要的是,它将深度学习的每一个细节都原原本本地展现出来,大大降低了人们学习研究和开发的难度. 一.从Caffe的开发中了解到的用户需求:深度学习的框架总会不断改变,Caffe也会有被新框架代替的一天.但是在开发Caffe的过程中,贾扬清发现大家喜欢的框架其实有着很多相似的地方,这些闪光点拥有很长的生命周…
TensorFlow TensorFlow 是相对高阶的机器学习库,用户可以方便地用它设计神经网络结构,而不必为了追求高效率的实现亲自写 C++或 CUDA 代码.它和 Theano 一样都支持自动求导,用户不需要再通过反向传播求解梯度.其核心代码和 Caffe 一样是用 C++编写的,使用 C++简化了线上部署的复杂度,并让手机这种内存和CPU资源都紧张的设备可以运行复杂模型(Python 则会比较消耗资源,并且执行效率不高).除了核心代码的 C++接口,TensorFlow 还有官方的 Py…
在单GPU下,所有这些工具集都调用cuDNN,因此只要外层的计算或者内存分配差异不大其性能表现都差不多. Caffe: 1)主流工业级深度学习工具,具有出色的卷积神经网络实现.在计算机视觉领域Caffe仍然是最流行的工具包,他有很多扩展,但是由于 一些遗留的架构问题,它对递归网络和语言建模的支持很差.此外,在caffe种图层需要使用C++定义,而网络则使用protobuf定义. 2)caffe支持pycaffe接口,但这仅仅是用来辅助命令行接口的,而即便是是使用pycaffe也必须使用Proto…
http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自TensorFlow于2015年底正式开源,距今已有一年多,这期间TensorFlow不断给人以惊喜.在这一年多时间,TensorFlow已从初入深度学习框架大战的新星,成为了几近垄断的行业事实标准.本文节选自<TensorFlow实战>第二章. 主流深度学习框架对比 深度学习研究的热潮持续高涨,各种开源…
TensorFlow TensorFlow 是相对高阶的机器学习库,用户可以方便地用它设计神经网络结构,而不必为了追求高效率的实现亲自写 C++或 CUDA 代码.它和 Theano 一样都支持自动求导,用户不需要再通过反向传播求解梯度.其核心代码和 Caffe 一样是用 C++编写的,使用 C++简化了线上部署的复杂度,并让手机这种内存和CPU资源都紧张的设备可以运行复杂模型(Python 则会比较消耗资源,并且执行效率不高).除了核心代码的 C++接口,TensorFlow 还有官方的 Py…
认识Caffe与Caffe2 目录: 一.Caffe的作者-贾扬清 二.Caffe简介--Caffe.Caffe2.Caffe2Go 三.认识Caffe 四.认识Caffe2 五.认识Caffe2Go     正文: 一.Caffe的作者-贾扬清 Caffe 作者:贾扬清,任Facebook研究科学家,曾在Google Brain工作.在AI领域有数年的研究经历.在UC Berkeley获得计算机科学博士学位,在清华大学获得硕士和本科学位.对两款流行的深度学习框架做过贡献:Caffe的作者,Te…
https://blog.csdn.net/flygeda/article/details/78638824 本文主要是对近期参考的网上各位大神的博客的总结,其中,从安装系统到跑通程序过程中遇到的各种问题,笔者会详细分析,有一些问题在网上都查不到.这些环境配置上的坑希望以后不要再踩到一.安装Ubuntu 16.04双系统原文是“简书”上的大神的帖子,非常详细,笔者完全按照文章的步骤安装的,并没有遇到问题 : Win10和Ubuntu16.04双系统安装详解:Ubuntu镜像官网下载,Ubuntu…
获取Android手机CPU类型 ARM.ARMV7.NEON:http://blog.csdn.net/mengweiqi33/article/details/22796619 android ndk各个版本下载地址:http://blog.csdn.net/shuzfan/article/details/52690554 android工具集合:http://www.androiddevtools.cn/ 模型链接:http://dl.caffe.berkeleyvision.org/ Gr…
虽然前段时间ARM被日本软银收购了,但是科技是无国界的,所以呢ARM相关知识该学的学.现在看ARM指令集还是倍感亲切的,毕竟大学里开了ARM这门课,并且做了不少的实验,当时自我感觉ARM这门课学的还是可以的.虽然当时感觉学这门课以后似乎不怎么用的上,可曾想这不就用上了吗,不过之前学的都差不多忘了,还得捡起来呢.ARM指令集是精简指令集,从名字我们就能看出指令的个数比那些负责指令集要少一些.当然本篇所涉及的ARM指令集是冰山一角,不过也算是基础,可以阅读Hopper中的汇编了,实践出真知,看多了自…
这个是在去年微博里面非常流行的,在git_hub上的代码是https://github.com/fzliu/style-transfer 比如这是梵高的画 这是你自己的照片 然后你想生成这样 怎么实现呢在基于windows的caffe上,其实这个很简单. 1 首先在 https://github.com/fzliu/style-transfer 把代码下载下来,另外主要这个代码基于pycaffe的,需要将pycaffe编译好. 最好是在电脑上装一个python progressbar包 ,具体操…
使用python接口来运行caffe程序,主要的原因是python非常容易可视化.所以不推荐大家在命令行下面运行python程序.如果非要在命令行下面运行,还不如直接用 c++算了. 推荐使用jupyter notebook,spyder等工具来运行python代码,这样才和它的可视化完美结合起来. 因为我是用anaconda来安装一系列python第三方库的,所以我使用的是spyder,与matlab界面类似的一款编辑器,在运行过程中,可以查看各变量的值,便于理解,如下图: 只要安装了anac…
ARM的指令系统中关于栈指令的内容比较容易引起迷惑,这是因为准确描述一个栈的特点需要两个参数: 栈地址的增长方向:ARM将向高地址增长的栈称为递增栈(Descendent Stack),将向低地址增长的栈称为递减栈(Acendant Stack) 栈指针的指向位置:ARM将栈指针指向栈顶元素位置的栈称为满栈(Full Stack),讲栈指针指向即将入栈的元素位置的栈称为空栈(Empty Stack) 1. 栈类型 根据栈地址增长方向雨栈指针指向位置的不同,自然可以将栈分为四类: 递增栈 递减栈…
小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文:  http://www.miaoerduo.com/deep-learning/基于caffe的large-margin-softmax-loss的实现(中).html 四.前馈 还记得上一篇博客,小喵给出的三个公式吗?不记得也没关系. 这次,我们要一点一点的通过代码来实现这些公式.小喵主要是GPU上实现前后馈的代码,因为这个层只…
小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L-Softmax,据说单model在LFW上能达到98.71%的等错误率.更重要的是,小喵觉得这个方法和DeepID2并不冲突,如果二者可以互补,或许单model达到99%+将不是梦想. 再次推销一下~ 小喵的博客网址是: http://www.miaoerduo.com 博客原文:  http://…
小喵的唠叨话:这次的博客,真心累伤了小喵的心.但考虑到知识需要巩固和分享,小喵决定这次把剩下的内容都写完. 小喵的博客:http://www.miaoerduo.com 博客原文: http://www.miaoerduo.com/deep-learning/基于caffe的deepid2实现(下).html ‎ 四.数据的重整,简单的划分 前面的Data层用于生成成对的输入数据,Normalization层,用于将feature归一化,那么之后是不是就可以使用ContrastiveLoss层进…
小喵的唠叨话:我们在上一篇博客里面,介绍了Caffe的Data层的编写.有了Data层,下一步则是如何去使用生成好的训练数据.也就是这一篇的内容. 小喵的博客:http://www.miaoerduo.com 博客原文:http://www.miaoerduo.com/deep-learning/基于caffe的deepid2实现(中).html 二.精髓,DeepID2 Loss层 DeepID2这篇论文关于verification signal的部分,给出了一个用于监督verificatio…
小喵的唠叨话:小喵最近在做人脸识别的工作,打算将汤晓鸥前辈的DeepID,DeepID2等算法进行实验和复现.DeepID的方法最简单,而DeepID2的实现却略微复杂,并且互联网上也没有比较好的资源.因此小喵在试验之后,确定了实验结果的正确性之后,才准备写这篇博客,分享给热爱Deep Learning的小伙伴们. 小喵的博客:http://www.miaoerduo.com 博客原文:http://www.miaoerduo.com/deep-learning/基于caffe的deepid2实…
ARM CPU大小端: 大端模式:低位字节存在高地址上,高位字节存在低地址上 小端模式:高位字节存在高地址上,低位字节存在低地址上 STM32属于小端模式,简单的说,比如u32 temp=0X12345678;假设temp地址在0X2000 0010.那么在内存里面,存放就变成了:地址              |            HEX         |0X2000 0010  |  78   56   43  12  |CPU到底是大端还是小端,可以通过如下代码测试: //CPU大小…
写在前面 2012年写的毕业设计,仅供参考 反汇编的目的 缺乏某些必要的说明资料的情况下, 想获得某些软件系统的源代码.设计思想及理念, 以便复制, 改造.移植和发展: 从源码上对软件的可靠性和安全性进行验证,对那些直接与CPU 相关的目标代码进行安全性分析: 涉及的主要内容 分析ARM处理器指令的特点,以及编译以后可执行的二进制文件代码的特征: 将二进制机器代码经过指令和数据分开模块的加工处理: 分解标识出指令代码和数据代码: 然后将指令代码反汇编并加工成易于阅读的汇编指令形式的文件: 下面给…
EZchip将推全球首款100核64位ARM A-53芯片 2015-02-25 16:32:03   来源:互联网    关键字: 将推  全球  64位  arm EZchip日前表示,将准备开发一款可以与博通.Cavium及英特尔竞争的服务器及通信系统处理器,不过该处理器将采用ARM架构,使用100颗64位A53内核.这颗采用28nm制程,2017年之后量产的处理速度高达200Gb/s的 Tile-MX100 的性能将超过大多数竞争对手.       该芯片是基于Tile-Gx多核架构,该…
原文链接 深度神经网络 (DNN) 培训属于计算密集型项目,需要在现代计算平台上花费数日或数周的时间方可完成. 在最近的一篇文章<基于英特尔® 至强™ E5 产品家族的单节点 Caffe 评分和培训>中,我们展示了基于 AlexNet 拓扑的 Caffe* 框架的性能提升 10 倍,单节点培训时间减少到 5 天. 英特尔继续履行 Pradeep Dubey 的博客中列出的机器学习愿景,在本篇技术预览中,我们将展示如何在多节点.分布式内存环境中将 Caffe 的培训时间从数日减少为数个小时.  …
原文链接 在互联网搜索引擎和医疗成像等诸多领域,深度神经网络 (DNN) 应用的重要性正在不断提升. Pradeep Dubey 在其博文中概述了英特尔® 架构机器学习愿景. 英特尔正在实现 Pradeep Dubey 博文中勾勒的机器学习愿景,并正在着手开发软件解决方案以加速执行机器学习工作负载.这些解决方案将包含在未来版本的英特尔® 数学核心函数库(英特尔® MKL)和英特尔® 数据分析加速库(英特尔® DAAL)中. 本技术预览版展示了配备我们正在开发的软件后,英特尔平台将有望实现的性能.…
转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ 因为利用Pyhon来做数据的预处理比较方便,因此在data_layer选择上,采用了MemoryDataLayer,可以比较方便的直接用Python 根据set_input_array进行feed数据,然后再调用solver进行step就可以了.说一下我碰到的问题,当时检查了一下感觉没有哪里出错,但是报 Segmentation Fault(Core Abor…
1,首先说下环境和配置 配置: 环境:windows10,vs2013 community,cuda8.0,caffe,cudnn4 注意:先要安装好显卡驱动(我的显卡是1070),这里的例子只开通了matlab接口,需要用python可以安装anacoda并打开python接口. 2,准备文件 例子中用的文件:链接:http://pan.baidu.com/s/1hsBNI3i 密码:cynd 注意一:处理cudnn有两种方式,其一是在vs的属性文件中给出目录:另一是将cudnn的文件放到C:…
首先修改src/caffe/proto/下的caffe.proto,修改好后需要编译 然后修改include/caffe/layers/logwxl_layer.hpp 然后修改src/caffe/layers/logwxl_layer.cpp和logwxl_layer.cu 最后make all ,make test ,make runtest 在make runtest的时候,卧槽有一个错误,好像是没有updateV1parameter什么的,但是不影响最后的训练…
SeetaFace简介 SeetaFace依赖于OpenCV,对于Tegra on Ubuntu,Nvidia提供libopencv4tegra并且可以使用Cuda加速. 准备工作 1.阅读OpenCV4Tegra-README.txt,下载对应板子版本的cuda与libopencv4tegra的repo文件 2.打开ubuntu的universe源: sudo apt-add-repository universe 并且可以换成国内的ubuntu-ports源. 3.下载SeetaFace g…
将binaryproto转为npy import caffe % suppose caffe is already in the path of Python import numpy as np import sys blob = caffe.proto.caffe_pb2.BlobProto() data = open( 'data/ilsvrc12/imagenet_mean.binaryproto' , 'rb' ).read() blob.ParseFromString(data) a…
很早之前就想试试Azure的express route,但是一直没有找到合适的机会,正好有个客户需要上express route,所以最近先自己研究研究,防止在做poc的时候耗费更多时间,本次场景我们选择使用powershell来创建,但是在这里笔者想提醒大家一句,有些读者可能使用过powershell在ASM中创建过express route,但是ARM中使用powershell与ASM还是不太一样的,大家创建的时候需要注意!!! 第一步,先在powershell上登陆到自己的账户上 PS C…
使用过Azure的读者都知道,Azure向客户提供了两个管理portal,一个是ASM,一个是ARM,虽然Azure官方没有宣布说淘汰ASM,两个portal可能会在很长的一段时间共存,但是考虑到ARM提供了更多的功能,只有很少部分工作才会用到powershell完成,所以笔者建议以后大家尽量使用ARM,但是对于哪些已经使用ASM作为生产环境的用户想迁移到ARM中,应该怎么办,今天笔者就像大家介绍一下如何将云资源从ASM迁移到ARM中!!! 首先介绍一下现在迁移可以使用的一些服务与工具 1.平台…