题意: 一个矩形区域被分成 m*n 个单元编号为 (1, 1)至 (m, n),左上为 (1, 1),右下为(m, n).给出P(k)i,j,其中 1 ≤ i ≤ m,1 ≤ j ≤ n,1 ≤ k ≤ 4,表示了 (i, j)到 (i+1, j),(i, j+1),(i-1, j),(i, j-1)的概率.一个骑士在 (1, 1),按照给定概率走,每步都于之前无关,问到达 (m, n)的期望步数. 解析: 很容易想到 然后移项  写出行列式 图截自大佬题解 矩阵中 概率为负 1为正 是因为移项…
JC的小苹果 Submit: 432  Solved: 159 Description 让我们继续JC和DZY的故事. “你是我的小丫小苹果,怎么爱你都不嫌多!” “点亮我生命的火,火火火火火!” 话说JC历经艰辛来到了城市B,但是由于他的疏忽DZY偷走了他的小苹果!没有小苹果怎么听歌!他发现邪恶的DZY把他的小苹果藏在了一个迷宫里.JC在经历了之前的战斗后他还剩下hp点血.开始JC在1号点,他的小苹果在N号点.DZY在一些点里放了怪兽.当JC每次遇到位置在i的怪兽时他会损失Ai点血.当JC的血…
先Tarjan缩点 强连通分量里用高斯消元外面直接转移 注意删掉终点出边和拓扑 #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<queue> #include<vector> #define N 10010 #define M 1000010 using namespace std; typedef double D;…
题目链接 参见远航之曲dalao的题解,我再写一遍的话就没啥意思了. #include<cstdio> #include<cstring> #include<algorithm> #include<cctype> #include<cstdlib> #include<cmath> #define maxn 505 using namespace std; inline long long read(){ ,f=; char ch=ge…
题意:  一个人在一条线段来回走(遇到线段端点就转变方向),现在他从起点出发,并有一个初始方向, 每次都可以走1, 2, 3 ..... m步,都有对应着一个概率.问你他走到终点的概率 思路: 方向问题很是问题,我们可以把线段改造成环,具体我们可以把除端点以外的点作为另一个半圆 和原来的线段拼成一个环, 方向就单一了,用dp[i]表示在i点的时候到达终点的期望步数,则dp[i]=dp[(i+1)%N]*p1+E[(i+2)%N]*p2+…E[(i+m)%N]*pm+1. 这里N为变成环以后的点数…
高斯消元可以解决一系列DP序混乱的无向图上(期望)DP DP序 DP序是一道DP的所有状态的一个排列,使状态x所需的所有前置状态都位于状态x前: (通俗的说,在一个状态转移方程中‘=’左侧的状态应该在‘=’右侧的所有状态之后) 于是往往只有按DP序转移状态,才可以保证每个状态值的正确性 一道DP的状态序不是唯一的 常见的有: 某些DAG上dp按拓扑序转移: 某些树上DP先转移x点的子树,后转移x: 某些树上DP先转移x,后转移x点的子树: 线性DP左到右或右到左: 区间DP小到大: 某些记忆化搜…
http://www.lydsy.com/JudgeOnline/problem.php?id=1770 a[i][j] 表示i对j有影响 高斯消元解异或方程组 然后dfs枚举自由元确定最优解 #include<cstdio> #include<algorithm> using namespace std; #define N 36 int n; bool a[N][N]; bool x[N]; int ans=1e9; void gauss() { int j; ;i<n;…
[题意]给定一棵树的灯,按一次x改变与x距离<=1的点的状态,求全0到全1的最少次数.n<=100. [算法]高斯消元解异或方程组 [题解]设f[i]=0/1表示是否按第i个点的按钮,根据每个灯的亮灭可以列出n个方程:a[i][j]表示第i盏灯是否受开关j影响,a[i][n+1]=a[i][i]=1. 由于方案不唯一,所以有自由元,DFS所有自由元得到所有可能答案,比较得到最少次数.DFS记得加最优性剪枝. #include<cstdio> #include<cstring&…
[题目大意] 有n个数或为奇数或为偶数,现在进行m次操作,每次取出部分求和,告诉你这几次操作选取的数和它们和的奇偶性.如果通过这m次操作能得到所有数的奇偶性,则输出进行到第n次时即可求出答案:否则输出无法确定. [思路] 高斯消元解xor方程组,求最少需要的方程个数或判断无法确定. 无法确定即存在自由元,在每次操作中找1的时候判断一下就好了:最小方程个数,就是记录下每次找到的最小的1的位置,最后输出最大值即可. [错误] 忘记把ans改为-1了(见程序注释) [备注] P.S.我看别人在高斯消元…
[题目大意] 给出一棵树,初始状态均为0,每反转一个节点的状态,相邻的节点(父亲或儿子)也会反转,问要使状态均为1,至少操作几次? [思路] 一场大暴雨即将来临,白昼恍如黑夜!happy! 和POJ1222差不多,首先容易知道:每个节点最多被反转一次,证明略. 高斯消元解Xor方程组可能存在自由元,即处理完后map[i][i]=0;则通过dfs来枚举所有的情况,求出最小的. [错误点] gauss里面交换值得时候不要忘了n+1也要跟着交换. dfs里面的t我一开始直接是按照往常一样修改map[i…