流式计算(一)-Java8Stream】的更多相关文章

大约各位看官君多少也听说了Storm/Spark/Flink,这些都是大数据流式处理框架.如果一条手机组装流水线上不同的人做不同的事,有的装电池,有的装屏幕,直到最后完成,这就是典型的流式处理.如果手机组装是先全部装完电池,再交给装屏幕的组,直到完成,这就是旧式的集合式处理.今天,就来先说说JDK8中的流,虽然不是很个特新鲜的话题,但是一个很好的开始,因为——思想往往比细节重要! 准备: Idea2019.03/Gradle5.6.2/JDK11.0.4/Lambda 难度:新手--战士--老兵…
前面说了Java8的流,这里还说流处理,既然是流,比如水流车流,肯定得有流的源头,源可以有多种,可以自建,也可以从应用端获取,今天就拿非常经典的Kafka做源头来说事,比如要来一套应用日志实时分析框架,或者是高并发实时流处理框架,正是Kafka的拿手好戏. 环境:Idea2019.03/Gradle6.0.1/JDK11.0.4/Lambda/RHEL8.0/VMWare15.5/Springboot2.2.1.RELEASE/Zookeeper3.5.5/Kafka2.3.1 难度:新手--战…
原创文章,谢绝任何形式转载,否则追究法律责任! ​流的世界,有点乱,群雄逐鹿,流实在太多,看完这个马上又冒出一个,也不知哪个才是真正的牛,据说Flink是位重量级选手,能流计算,还能批处理, 和其他伙伴关系也融洽的很,与HDFS/File/SQL/MQ往来都不在话下,今天我们就来实战一把. 环境:Idea2019.03/Gradle6.0.1/JDK11.0.4/Lambda/RHEL8.0/VMWare15.5/Springboot2.2.1.RELEASE/Mysql8.0.11/Kafka…
流式计算平台-Storm 我们以Storm为例来看流式计算的功能是什么. 下面内容引用自大圆的博客.在Storm中,一个实时应用的计算任务被打包作为Topology发布,这同Hadoop的MapReduce任务相似.但是有一点不同的是:在Hadoop中,MapReduce任务最终会执行完成后结束:而在Storm中,Topology任务一旦提交后永远不会结束,除非你显示去停止任务. 计算任务Topology是由不同的Spouts和Bolts,通过数据流(Stream)连接起来的图.下面是一个Top…
上篇的内容,我们探讨了分布式计算中的MapReduce与批处理.所以本篇我们将继续探索分布式计算优化的相关细节,并且分析MapReduce与批处理的局限性,看看流式计算是否能给我们在分布式计算层面提供一个更好的解决方案. 1.MapReduce的局限 MapReduce作业是独立于其他作业,输入与输出目录通过分布式存储系统串联.MapReduce作业的存在相互的依赖关系,前后相互依赖的作业需要将后面作业的输入目录配置为与之前作业的输出目录,工作流调度器必须在第一个作业完成后才开始第二个作业. 依…
Google是最早实践大数据的公司,目前大数据繁荣的生态很大一部分都要归功于Google最早的几篇论文,这几篇论文早就了以Hadoop为开端的整个开源大数据生态,但是很可惜的是Google内部的这些系统是无法开源的,在开源生态和云计算兴起之后,Google也是受够了闭源的痛苦,据说为了给用户提供HBase服务,Google还为BigTable写了兼容HBase的API,在Google看来这就是一种羞辱,痛定思痛,Google开始走开源之路,将自己的标准推广给社区,这就是Apache Beam项目…
http://www.infoq.com/cn/articles/kafka-analysis-part-7/ Kafka设计解析(七)- 流式计算的新贵 Kafka Stream…
阿里专家强琦:流式计算的系统设计和实现 更多深度文章,请关注云计算频道:https://yq.aliyun.com/cloud 阿里云数据事业部强琦为大家带来题为“流式计算的系统设计与实现”的演讲,本文主要从增量计算和流式计算开始谈起,然后讲解了与批量计算的区别,重点对典型系统技术概要进行了分析,包括Storm.Kinesis.MillWheel,接着介绍了核心技术.消息机制以及StreamSQL等,一起来了解下吧. 增量计算和流式计算 流式计算 流计算对于时效性要求比较严格,实时计算就是对计算…
一.概述 今天起就正式进入了流式计算.这里先解释一下流式计算的概念 离线计算 离线计算:批量获取数据.批量传输数据.周期性批量计算数据.数据展示 代表技术:Sqoop批量导入数据.HDFS批量存储数据.MapReduce批量计算数据.Hive批量计算数据.***任务调度 ,hivesql .调度平台 .Hadoop集群运维 .数据清洗(脚本语言) .元数据管理 .数据稽查 .数据仓库模型架构 相关技术栈与应用 流式计算 流式计算:数据实时产生.数据实时传输.数据实时计算.实时展示 代表技术:Fl…
Kafka Stream-Spark Streaming-Storm流式计算框架比较选型 elasticsearch-head Elasticsearch-sql client NLPchina/elasticsearch-sql: Use SQL to query Elasticsearch kafka stream vs spark streaming vs storm_百度搜索 [翻译]Kafka Streams简介: 让流处理变得更简单 - devos - 博客园 kafka strea…
11月.NET技术讨论会圆满结束,会议纪要及相关文档如下如下:  1.WebForm预编译演示 文档:http://gitlab.light.fang.com/kongguDonet.Demo/Precompilation/blob/master/WebFormCompiler.MD 演示项目:http://gitlab.light.fang.com/kongguDonet.Demo/Precompilation/tree/master/Deploy_WebApplication1 示例bat脚…
Storm是一个分布式的.高容错的实时计算系统.Storm适用的场景: 1.Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中. 2.由于Storm的处理组件都是分布式的,而且处理延迟都极低,所以可以Storm可以做为一个通用的分布式RPC框架来使用. 那么下面就对大数据学习思路里的strom流式计算进行简单分解,了解一下在学习大数据中应该了解哪些流式计算的知识. 1.redis缓存系统大纲 学习内容:Redis的特点.安装如何使用命令客户端,redis的字符串类型.…
Storm是一个分布式的.高容错的实时计算系统.Storm适用的场景: Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中. 由于Storm的处理组件都是分布式的,而且处理延迟都极低,所以可以Storm可以做为一个通用的分布式RPC框架来使用.(实时计算?) Storm集群架构 Storm集群采用主从架构方式,主节点是Nimbus,从节点是Supervisor,有关调度相关的信息存储到ZooKeeper集群中,架构如下图所示 Nimbus:Storm集群的Master…
本文是作者在充分阅读和理解Yahoo!最新发布的技术论文<S4:Distributed Stream Computing Platform>的基础上,所做出的知识分享. S4是Yahoo!在2010年10月开源的一套通用.分布式.可扩展.部分容错.具备可插拔功能的平台.这套平台主要是为了方便开发者开发处理流式数据(continuous unbounded streams of data)的应用.项目官方网站为:http://s4.io/.同时,S4的开发者也发表了一篇技术论文<S4:Di…
原文地址:https://mp.weixin.qq.com/s?__biz=MzA5NzkxMzg1Nw==&mid=2653162822&idx=1&sn=8c46114360b98b621b166d41d8e01d74&chksm=8b493028bc3eb93e8376d85c7d1f9b2a699888b7f0f52e4556bb8543ebebd5e102e91ea23355#rd 本文介绍了 Kafka Stream 的背景,如 Kafka Stream 是什么…
随着对spark的了解,有时会觉得spark就像一个宝盒一样时不时会出现一些难以置信的新功能.每一个新功能被挖掘,就可以使开发过程变得更加便利一点.甚至使很多不可能完成或者完成起来比较复杂的操作,变成简单起来.有些功能是框架专门开放给用户使用,有些则是框架内部使用但是又对外暴露了接口,用户也可以使用的功能. 今天和大家分享的是两个监听器SparkListener和streamingListener,由于这两个监听器的存在使得很多功能的开发变得轻松很多,也使很多技术实现变得轻便很多. 结合我的使用…
在流式计算过程中,难免会连接第三方存储平台(redis,mysql...).在操作过程中,大部分情况是在foreachPartition/mapPartition算子中做连接操作.每一个分区只需要连接一次第三方存储平台就可以了.假如,当前streaming有100分区,当前流式计算宫分配了20个cpu,有4个cpu负责接收数据.那么,在一个批次中一共需要对第三方平台创建100次连接,同时最大并行连接第三方平台个数20-4=16个.假如30s一个批次,一天就需要频繁释放连接24*60*60/2=4…
概念 实时流式计算: 大数据环境下,流式数据将作为一种新型的数据类型,这种数据具有连续性.无限性和瞬时性.是实时数据处理所面向的数据类型,对这种流式数据的实时计算就是实时流式计算. 特征 实时流式计算与传统的数据处理技术不同,其具有一下特点: 低延迟:从处理的数据角度来看,每一条数据都可以在有限的时间内由系统成功处理完成,就是响应的时间很短. 高吞吐:从处理的过程角度来看,系统节点在单位时间内能够成功处理的数据量比较多,也就是高吞吐量.对于数据处理的目标本质来说高吞吐量和低延迟是一样的. 高容错…
jdk8之后增加了流式计算,现在根据学习了流式计算,并把过程记录下来: Person.java的bean package com.zhang.collectordemo; /** * @program: utilsdemo * @description: pojo的测试类 * @author: zhangyu * @create: 2019-06-18 13:51 */public class Person { private Integer id; private String name; p…
小结与扩展 池的最大的大小如何去设置! 了解:IO密集型,CPU密集型:(调优)  //1.CPU密集型 几核就是几个线程 可以保持效率最高 //2.IO密集型判断你的程序中十分耗IO的线程,只要大于这个线程数就行 一般设置为这个耗IO线程数的两倍  package com.kuang.pool; ​ import java.util.concurrent.*; ​ // Executors工具类 三大方法 ​ //使用了线程池之后,使用线程池来创建线程 public class Demo01…
在我们看他人code的时候经常会看到,可能会经常看到lambda表达式,函数式接口,以及流式计算.在刚接触这些新功能时,也觉得真的有必要吗?但是现在写多了,发现这个功能确实能简化代码结构,提升编码效率.lambda表达式,函数式接口,流式计算单个来用确实非常难用,但是整合到一起,就会发生非常奇妙的反应. lambda表达式 lambda表达式允许把函数作为一个方法的参数.即,函数作为参数传递进方法. lambda语法 (parameters) -> expression OR (paramete…
Stream流式计算 集合/数据库用来进行数据的存储 而计算则交给流 /** * 现有5个用户,用一行代码 ,一分钟按以下条件筛选出指定用户 *1.ID必须是偶数 *2.年龄必须大于22 *3.用户名转换为大写 *4.用户名字母倒着排序 *5.只输出一个用户 * */public class Demo {    public static void main(String[] args) {        User u1 = new User(1,"A",20);        Use…
1. 简介 是一个分布式, 高容错的 实时计算框架 Storm进程常驻内存, 永久运行 Storm数据不经过磁盘, 在内存中流转, 通过网络直接发送给下游 流式处理(streaming) 与 批处理(batch) 批处理(batch): MapReduce 微批处理(MircroBatch): Spark (性能上近似 Streaming, 但是还是有所不及) 流(streaming): Storm, Flink(其实Flink也可以做批处理) Storm MapReduce 流式处理 批处理…
我是3y,一年CRUD经验用十年的markdown程序员‍常年被誉为职业八股文选手 最近如果拉过austin项目代码的同学,可能就会发现多了一个austin-stream模块.其实并不会意外,因为这一切都在计划当中进行. 这个模块主要是接入流式处理平台(flink),用于实时计算清洗数据给到业务以及系统维护者更方便去使用消息推送平台austin. 这篇文章主要来聊聊接入的背景以及我浅薄的经验吧 01.为什么流式处理平台 我在老东家有过处理数据相关的经验,也看到过站内广告「效果数据」的发展历程.…
Storm是一个分布式的.容错的实时计算系统,遵循Eclipse Public License 1.0,Storm可以方便地在一个计算机集群中编写与扩展复杂的实时计算,Storm之于实时处理,就好比Hadoop之于批处理.Storm保证每个消息都会得到处理,而且它很快——在一个小集群中,每秒可以处理数以百万计的消息.可以使用任意编程语言来做开发.主要商业应用及案例:TwitterStorm的优点1. 简单的编程模型.类似于MapReduce降低了并行批处理复杂性,Storm降低了进行实时处理的复…
你是否有过这样的念头:如果能立刻马上看到我想要的数据,我就能更好地决策?   市场变化越来越快,企业对于数据及时性的需求,也越来越大,另一方面,当下数据容量呈几何倍暴增,数据的价值在其产生之后,也将随着时间的流逝,逐渐降低.因此,我们最好在事件发生之后,迅速对其进行有效处理,实时,快速地处理新产生的数据,帮助企业快速地进行异常管理和有效决策,而不是待数据存储在一起之后,再进行批量处理.   一:sparkStreaming+hbase整合应用,助力企业实时运营监控   对于不作更新的数据,可以通…
一.集群提交任务流程分析 1.集群提交操作 参考:https://www.jianshu.com/p/6783f1ec2da0 2.任务分配与启动流程 参考:https://www.cnblogs.com/heitaok/p/5531535.html 二.相关目录树 1.组件本地目录树 2.storm zk目录树 三.集群通信 Worker间的通信经常需要通过网络跨节点进行,Storm使用ZeroMQ或Netty(0.9以后默认使用)作为进程间通信的消息框架. Worker进程内部通信:不同wo…
一.常用命令 1.提交命令 提交任务命令格式:storm jar [jar路径] [拓扑包名.拓扑类名] [拓扑名称] torm jar examples/storm-starter/storm-starter-topologies-.jar storm.starter.WordCountTopology wordcount 2.杀死任务 storm (执行kill命令时可以通过-w [等待秒数]指定拓扑停用以后的等待时间) storm 3.停用任务 storm deactivte [拓扑名称]…
UpdateStateByKey 使用说明:维护key的状态. 使用注意:使用该算子需要设置checkpoint 使用示例: object UpdateStateByKeyTest { def main(args: Array[String]): Unit = { val conf=new SparkConf().setMaster("local[2]").setAppName("UpdateStateByKeyTest") val ssc=new Streamin…
Storm简介: Storm起源Twitter开源的一个类似于Hadoop的实时数据处理框架,不过两则还是有区别的,Hadoop是批量处理数据,而Storm处理的是实时的数据流. Storm应用场景: 1.推荐系统:实时跟新模型查询并推荐,根据下单或者加入购物车推荐相关商品. 1.网站统计:实时销量,统计流量(PV,UV). 3.监控预警系统,各个金融系统(金融风控,信用卡反欺诈). 4.日志处理:处理系统中海量日志数据. Storm特性: 1.适用场景非常广泛:实时处理和更新,持续并行化查询,…