0--前言 对于分布式系统环境,主键ID的设计很关键,什么自增intID那些是绝对不用的,比较早的时候,大部分系统都用UUID/GUID来作为主键,优点是方便又能解决问题,缺点是插入时因为UUID/GUID的不规则导致每插入一条数据就需要重新排列一次,性能低下:也有人提出用UUID/GUID转long的方式,可以很明确的告诉你,这种方式long不能保证唯一,大并发下会有重复long出现,所以也不可取,这个主键设计问题曾经是很多公司系统设计的一个头疼点,所以大部分公司愿意牺牲一部分性能而直接采用简…
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_155 但凡说起分布式系统,我们肯定会对一些海量级的业务进行分拆,比如:用户表,订单表.因为数据量巨大一张表完全无法支撑,就会对其进行分库分表.但是一旦涉及到分库分表,就会引申出分布式系统中唯一主键ID的生成问题,当我们使用mysql的自增长主键(auto_increment)时,充分感受到了它的好处:整个系统ID唯一,ID是数字类型,而且是趋势递增的,ID简短,查询效率快,在分布式系统中显然由于单点问题无法使用mysql自增长…
前言 项目中主键ID生成方式比较多,但是哪种方式更能提高的我们的工作效率.项目质量.代码实用性以及健壮性呢,下面作了一下比较,目前雪花算法的优点还是很明显的. 优缺点比较 UUID(缺点:太长.没法排序.使数据库性能降低) Redis(缺点:必须依赖Redis) Oracle序列号(缺点:用Oracle才能使用) Snowflake雪花算法,优点:生成有顺序的id,提高数据库的性能 Snowflake雪花算法解析 雪花算法解析 结构 snowflake的结构如下(每部分用-分开):0 - 000…
在springboot的启动类中引入 @Bean public IdWorker idWorkker(){ return new IdWorker(1, 1); } 在代码中调用 @Autowired private IdWorker idWorker; user.setId( idWorker.nextId()+"" ); snowflake(雪花)算法源码复制即用 package util; import java.lang.management.ManagementFactory…
<sharding-jdbc 分库分表的 4种分片策略> 中我们介绍了 sharding-jdbc 4种分片策略的使用场景,可以满足基础的分片功能开发,这篇我们来看看分库分表后,应该如何为分片表生成全局唯一的主键 ID. 引入任何一种技术都是存在风险的,分库分表当然也不例外,除非库.表数据量持续增加,大到一定程度,以至于现有高可用架构已无法支撑,否则不建议大家做分库分表,因为做了数据分片后,你会发现自己踏上了一段踩坑之路,而分布式主键 ID 就是遇到的第一个坑. 不同数据节点间生成全局唯一主键…
.Net Core ORM选择之路,哪个才适合你   因为老板的一句话公司项目需要迁移到.Net Core ,但是以前同事用的ORM不支持.Net Core 开发过程也遇到了各种坑,插入条数多了也特别的慢,导致系统体验比较差好多都改写Sql实现. 所以我打算找一款 性能比较好 功能比较完善 方便以后可以切换数据库(经过我对老板的了解这个功能非常重要) 并且要有一定用户基础的ORM 参赛ORM 能够参赛的ORM必须要有以下个条件 第一.功能方面要比较完善 第二.Github需要有一定人气并且最近有…
转载请声明出处哦~,本篇文章发布于luozhiyun的博客:https://www.luozhiyun.com/archives/527 每次放长假的在家里的时候,总想找点简单的例子来看看实现原理,这次我们来看看 Go 语言雪花算法. 介绍 有时候在业务中,需要使用一些唯一的ID,来记录我们某个数据的标识.最常用的无非以下几种:UUID.数据库自增主键.Redis的Incr命令等方法来获取一个唯一的值.下面我们分别说一下它们的优劣,以便引出我们的分布式雪花算法. UUID 首先是 UUID ,它…
主键生成策略 系统唯一ID是我们在设计一个系统的时候常常会遇见的问题,下面介绍一些常见的ID生成策略. Sequence ID UUID GUID COMB Snowflake 最开始的自增ID为了实现分库分别的需求,会在自增的前提下,使用不同步长(例如DB1 生成1,4,7,10,DB2生成2,5,8,11,DB3生成3,6,9,12),但需要做数据库拓展时,极其麻烦. 相比自增ID,UUID生成唯一主键更加方便(数据量非常大的情况下,存在重复的可能),但由于UUID的无序性,性能不如自增ID…
现在好多的ID都是服务器端生成的,当然JS也可以生成GUID或者UUID之类的,但是如果想要有序……这时就想到了雪花算法,但是都知道JS中Number的最大值为Number.MAX_SAFE_INTEGER:9007199254740991.在雪花算法中,有的操作在JS中会溢出.不过还好,网上有好多BigInt的类库,例如本例使用的:http://peterolson.github.io/BigInteger.js/ ,还有就是chrome67 原生支持BigInt类型,这是个好消息…… 参考文…
[相关链接:http://blog.csdn.net/bluishglc/article/details/7710738] 具体做法: 1:找两台服务器,分别配置: TicketServer1: auto auto TicketServer2: auto auto 例如:可以在全局global,本地session或者local动态设置这两个参数以控制auto_increment的增量与偏移量.本例在session中设置这二者的值: 具体做法是:1.1:修改自增量 mysql> set @@ses…