Computer Vision的尴尬---by林达华】的更多相关文章

Computer Vision的尴尬---by林达华 Computer Vision是AI的一个非常活跃的领域,每年大会小会不断,发表的文章数以千计(单是CVPR每年就录取300多,各种二流会议每年的文章更可谓不计其数),新模型新算法新应用层出不穷.可是,浮华背后,根基何在?对于Vision,虽无大成,但涉猎数年,也有管窥之见.Vision所探索的是一个非常复杂的世界,对于这样的世界如何建模,如何分析,却一直没有受普遍承认的理论体系.大部分的研究工作,循守着几种模式:o    从上游学科(比如立…
[综述](MIT博士)林达华老师-"概率模型与计算机视觉” 距上一次邀请中国科学院的樊彬老师为我们撰写图像特征描述符方面的综述(http://www.sigvc.org/bbs/thread-165-1-1.html)之后,这次我们荣幸地邀请到美国麻省理工学院(MIT)博士林达华老师为我们撰写“概率模型与计算机视觉”的最新综述.这次我们特别增设了一个问答环节,林老师针对论坛师生提出的许多问题(如概率图模型与目前很热的深度神经网络的联系和区别)一一做了详细解答,并附在综述的后面. 林达华老师博士毕…
声明:本文转载自http://www.sigvc.org/bbs/thread-728-1-1.html,个人感觉是很好的PGM理论综述,高屋建瓴的总结了PGM的主要分支和发展趋势,特收藏于此. “概率模型与计算机视觉”林达华美国麻省理工学院(MIT)博士   上世纪60年代, Marvin Minsky 在MIT让他的本科学生 Gerald Jay Sussman用一个暑假的时间完成一个有趣的Project: “link a camera to a computer and get the c…
原文: Computer Vision是AI的一个非常活跃的领域,每年大会小会不断,发表的文章数以千计(单是CVPR每年就录取300多,各种二流会议每年的文章更可谓不计其数),新模型新算法新应用层出不穷.可是,浮华背后,根基何在? 对于Vision,虽无大成,但涉猎数年,也有管窥之见.Vision所探索的是一个非常复杂的世界,对于这样的世界如何建模,如何分析,却一直没有受普遍承认的理论体系.大部分的研究工作,循守着几种模式: 从上游学科(比如立体几何,机器学习,优化等等)获取现成方法,略加变化,…
1. 线性代数 (Linear Algebra): 我想国内的大学生都会学过这门课程,但是,未必每一位老师都能贯彻它的精要.这门学科对于Learning是必备的基础,对它的透彻掌握是必不可少的.我在科大一年级的时候就学习了这门课,后来到了香港后,又重新把线性代数读了一遍,所读的是 Introduction to Linear Algebra (3rd Ed.)  by Gilbert Strang. 这本书是MIT的线性代数课使用的教材,也是被很多其它大学选用的经典教材.它的难度适中,讲解清晰,…
持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepages(随意排序,不分先后): 1.USC Computer Vision Group:南加大,多目标跟踪/检测等: 2.ETHZ Computer Vision Laboratory:苏黎世联邦理工学院,欧洲最好的几个CV/ML研究机构: 3.Helmut Grabner:Online Boost…
积累记录一些视觉实验室,方便查找 1.  多伦多大学计算机科学系 2.  普林斯顿大学计算机视觉和机器人实验室 3.  牛津大学Torr Vision Group 4.  伯克利视觉和学习中心 Prof. Trevor Darrell CS280 Computer Vision Object Detection and Segmentation for RGB-D Images 5. Carnegie Mellon University(CMU) Compoter Vision Group Kr…
In the 1960s, the legendary Stanford artificial intelligence pioneer, John McCarthy, famously gave a graduate student the job of “solving” computer vision as a summer project. It has occupied an entire community of academic researchers for the past 4…
As I walked through the large poster-filled hall at CVPR 2013, I asked myself, “Quo vadis Computer Vision?" (Where are you going, computer vision?)  I see lots of papers which exploit last year’s ideas, copious amounts of incremental research, and an…
    WTF is computer vision? Posted Nov 13, 2016 by Devin Coldewey, Contributor   Next Story   Someone across the room throws you a ball and you catch it. Simple, right? Actually, this is one of the most complex processes we've ever attempted to compr…