P4721 【模板】分治 FFT】的更多相关文章

题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以只做到 2*(r-l),能快一倍. 代码如下: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long…
题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg_{i-j}+\sum_{j=mid+1}^rf_jg_{i-j}\] 复杂度\(O(n\log^2n)\). 分治思路见:https://www.cnblogs.com/SovietPower/p/9366763.html 多项式求逆做法先坑着. //693ms 4.91MB #include <…
题面 这是CDQ入门题,不要被题目名骗了,这核心根本不在不在FFT上啊=.= 因为后面的项的计算依赖于前面的项,不能直接FFT.所以用CDQ的思想,算出前面然后考虑给后面的贡献 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ,mod=; *N],b[*N],rev[*N],f[N],g[N],n,G,Gi; void exGCD(int a,int b,int &a…
P4721 [模板]分治 FFT 题目背景 也可用多项式求逆解决. 题目描述 给定长度为 \(n−1\) 的数组 \(g[1],g[2],\dots,g[n-1]\),求 \(f[0],f[1],\dots,f[n-1]\),其中\(f[i]=\sum_{j=1}^if[i-j]g[j]\) 边界为 \(f[0]=1\) .答案模 \(998244353\) . 输入输出格式 输入格式: 第一行一个正整数 \(n\) . 第二行共 \(n−1\) 个非负整数 \(g[1],g[2],\dots,…
瞎扯 虽然说是FFT但是还是写了一发NTT(笑) 然后忘了IDFT之后要除个n懵逼了好久 以及递归的时候忘了边界无限RE 思路 朴素算法 分治FFT 考虑到题目要求求这样的一个式子 \[ F_x=\Sigma_{i=1}^{x}F_{x-i}G_{i} \] 我们可以按定义暴力,然后再松式卡常(不是) 我们可以发现它长得像一个卷积一样,但是因为后面的f值会依赖与前面的f值,所以没法一遍FFT直接求出结果,而对每个f都跑一遍FFT太慢了,我们使用分治优化这个过程就很优秀了,复杂度是\(O(n\lo…
题目大意:给定长度为$n-1$的数组$g_{[1,n)}$,求$f_{[0,n)}$,要求: $$f_i=\sum_{j=1}^if_{i-j}g_j\\f_0=1$$ 题解:直接求复杂度是$O(n^2)$,明显不可以通过此题 分治$FFT$,可以用$CDQ$分治,先求出$f_{[l,mid)}$,可以发现这部分对区间的$f_{[mid,r)}$的贡献是$f_{[l,mid)}*g_{[0,r-l)}$,卷出来加到对应位置就行了,复杂度$O(n\log_2^2n)​$ 卡点:无 C++ Code…
传送门 多项式求逆的解法看这里 我们考虑用分治 假设现在已经求出了$[l,mid]$的答案,要计算他们对$[mid+1,r]$的答案的影响 那么对右边部分的点$f_x$的影响就是$f_x+=\sum_{i=l}^{mid}f[i]g[x-i]$ 发现右边那个东西可以用卷积快速计算 那么只要一边分治一边跑FFT统计贡献就行了 说是分治FFT实际上代码里写的是NTT…… 而且分治FFT跑得好慢多项式求逆的速度是它的10倍啊…… //minamoto #include<iostream> #incl…
传送门 我是用多项式求逆做的因为分治FFT看不懂…… upd:分治FFT的看这里 话说这个万恶的生成函数到底是什么东西…… 我们令$F(x)=\sum_{i=0}^\infty f_ix^i,G(x)=\sum_{i=0}^\infty g_ix^i$,且$g_0=0$ 这俩玩意儿似乎就是$f(x)$和$g(x)$的生成函数 那么就有$$F(x)G(x)=\sum_{i=0}^\infty x^i\sum_{j+k=i}f_jg_k$$ 然后根据题目,有$$f_i=\sum_{j=1}^if_{…
分治FFT的板子为什么要求逆呢 传送门 这个想法有点\(cdq\)啊,就是考虑分治,在算一段区间的时候,我们把他分成两个一样的区间,然后先做左区间的,算完过后把左区间和\(g\)卷积一下,这样就可以算出左区间里的\(f\)对右边的贡献,然后再算右边的就好了. 手玩一组样例吧:g=[0,3,1,2](默认\(g[0] = 0\)) 一开始,只有f[0]=1 f: [1 0|0 0] 然后我们从中间分开来,先算左边的 f: [1|0|0 0] 然后在分下去我们会找到\(f[0]\),就拿这一段和\(…
P4721 [模板]分治 FFT 链接 luogu 题目描述 给定长度为 \(n-1\) 的数组 \(g[1],g[2],..,g[n-1]\),求 \(f[0],f[1],..,f[n-1]\),其中 \[f[i]=\sum_{j=1}^if[i-j]g[j]\] 边界为 \(f[0]=1\) .答案模 \(998244353\) . 思路 分治+ntt.跑900+ms 其实limit只要设到区间长度就可以了,其他的是用不到的.对前半部分也没得影响. 代码 #include <bits/std…