Calculus on Computational Graphs: Backpropagation Introduction Backpropagation is the key algorithm that makes training deep models computationally tractable. For modern neural networks, it can make training with gradient descent as much as ten milli…
Posted on August 31, 2015 Introduction Backpropagation is the key algorithm that makes training deep models computationally tractable. For modern neural networks, it can make training with gradient descent as much as ten million times faster, relativ…
阅读笔记: 仅希望对底层有一定必要的感性认识,包括一些基本核心概念. Here只关注Graph相关,因为对编程有益. TF – Kernels模块部分参见:https://mp.weixin.qq.com/s/vwSlxxD5Ov0XwQCKy1oyuQ TF – Session部分,也可以在起专题总结:https://mp.weixin.qq.com/s/Bi6Rg-fEwyN4uIyRHDPhXg Tensorflow Download: https://github.com/tensorf…
http://www.tuicool.com/articles/MBBbeeQ 在AlphaGo与李世石比赛期间,谷歌天才工程师Jeff Dean在Google Campus汉城校区做了一次关于智能计算机系统的大规模深度学习(Large-Scale Deep Learning for Intelligent Computer Systems)的演讲.本文是对他这次演讲的总结. 如果你无法理解信息里包含的内容,那么就会很难将其组织起来. 自从AlphaGo与李世石的比赛——这是约翰·亨利对战蒸汽锤…
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS TUTORIAL, PART 2 – IMPLEMENTING A RNN WITH PYTHON, NUMPY AND THEANO . github地址 在这篇博文中,我们将会使用Python从头开始实现一个循环神经网络,并且利用Theano(一个在GPU上执行操作的库)优化原始的实现.所有的代码…
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 这是RNN教程的第三部分. 在前面的教程中,我们从头实现了一个循环神经网络,但是并没有涉及随时间反向传播(BPTT)算法如何计算梯度的细节.在这部分,我们将会简要介绍BPTT并解释它和传统的反向传播有何区别.我们也会尝试着理解梯度消失问题,这也是LSTM和GRU(目前NLP及其它领域中最为流行和有用的模型)得以发展的原因.梯度消失问题最早是由 Sepp Hochr…
首先看这个自动求导的参数: grad_variables:形状与variable一致,对于y.backward(),grad_variables相当于链式法则dz/dx=dz/dy × dy/dx 中的 dz/dy.grad_variables也可以是tensor或序列. retain_graph:反向传播需要缓存一些中间结果,反向传播之后,这些缓存就被清空,可通过指定这个参数不清空缓存,用来多次反向传播. create_graph:对反向传播过程再次构建计算图,可通过backward of b…
LSTM与Highway-LSTM算法实现的研究概述 zoerywzhou@gmail.com http://www.cnblogs.com/swje/ 作者:Zhouwan  2015-12-22   声明: 1)该LSTM的学习系列是整理自网上很多大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除. 3)本人才疏学浅,…
What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, My lab has been one of the three that started the deep learning approach, back in 2006, along with Hinton's... Answered Jan 20, 2016   Originally Ans…
Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯   徐亦达老板 Dirichlet Process 学习目标:Dirichlet Process, HDP, HDP-HMM, IBP, CRM Alex Kendall Geometry and Uncertainty in Deep Learning for Computer Vision 语义分割 colah's blog Feature Visu…
If you see a package or project here that is no longer maintained or is not a good fit, please submit a pull request to improve this file. Thank you! Contents Awesome Go Audio and Music Authentication and OAuth Command Line Configuration Continuous I…
Training (deep) Neural Networks Part: 1 Nowadays training deep learning models have become extremely easy with high-quality libraries such as Torch and Theano. These libraries are really helpful for rapidly prototyping deep learning models even witho…
Awesome Go      financial support to Awesome Go A curated list of awesome Go frameworks, libraries and software. Inspired by awesome-python. Contributing Please take a quick gander at the contribution guidelines first. Thanks to all contributors; you…
Research Guide for Neural Architecture Search 2019-09-19 09:29:04 This blog is from: https://heartbeat.fritz.ai/research-guide-for-neural-architecture-search-b250c5b1b2e5 From training to experimenting with different parameters, the process of design…
目录 Probabilistic Graphical Models Statistical and Algorithmic Foundations of Deep Learning 01 An overview of DL components Historical remarks: early days of neural networks Reverse-mode automatic differentiation (aka backpropagation) Modern building…
Lecture 8  Deep Learning Software 课堂笔记参见:https://blog.csdn.net/u012554092/article/details/78159316 今天我们来介绍深度学习软件,它们的性能.优劣以及应用流程,包括CPU.GPU和一些流行的深度学习框架. 一.          CPU vs GPU GPU被称作显卡(graphics card),或者图形处理器(Graphics Processing Unit),是一种专门进行图像运算工作的微处理器…
目录 TensorFlow简介 TensorFlow基本概念 Using TensorFlow Optimization & Linear Regression & Logistic Regression 1. TensorFlow简介   TensorFlow由Google的Brain Team创立,于2015年11月9日开源.   TensorFlow中文社区网站:http://www.tensorfly.cn .   TensorFlow, 其含义为 Tensor + Flow, 具…
https://vivekcek.wordpress.com/tag/tensorboard-windows/   Visualise Computational Graphs with Tensorboard and Tensorflow Posted by vivekcek on August 6, 2017 In this post i will show , how you can visualise computational graphs created by tensorflow…
2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源. 1.TensorFlow的概念 TensorFlow 是使用数据流图进行数值计算的开源软件库.也就是说,TensorFlow 使用图(graph)来表示计算任务.图中的节点表示数学运算,边表示运算之间用来交流的多维数组(也就是tensor,张量).TensorFlow 灵活的架构使得你可以将计算过程部署到一个或多个CPU或GPU上. TensorFlow 最初是由 Google Brain Team 的研究人员和…
目录 1. 快速入门PYTORCH 1.1. 什么是PyTorch 1.1.1. 基础概念 1.1.2. 与NumPy之间的桥梁 1.2. Autograd: Automatic Differentiation 1.2.1. Tensor 1.2.2. Gradients 1.3. Neural Networks 1.3.1. Defind the network 1.3.2. Process inputs and call backward 1.3.3. Loss function 1.3.4…
首先给出一个TVM 相关的介绍,这个是Tianqi Chen演讲在OSDI18上用的PPThttps://files.cnblogs.com/files/jourluohua/Tianqi-Chen-TVM-Stack-Overview.rar 对于图优化来说,位于整个软件编译栈比较高的层次: 首先给出计算图的定义 Computational graphs: a common way to represent programs in deep learning frameworks 对于图优化来…
Numpy 是一个非常好的框架,但是不能用 GPU 来进行数据运算. Numpy is a great framework, but it cannot utilize GPUs to accelerate its numerical computations. For modern deep neural networks, GPUs often provide speedups of 50x or greater, so unfortunately numpy won't be enough…
TVM图优化与算子融合 计算图的定义 Computational graphs: a common way to represent programs in deep learning frameworks 对于图优化来说,有很多种图优化手段: Operator Fusion Constant Parameter Path Pre-Computation Static Memory Reuse Analysis Data Layout Transformation AlterOpLayout S…
端到端TVM编译器(上) 摘要 将机器学习引入到各种各样的硬件设备中.AI框架依赖于特定于供应商的算子库,针对窄范围的服务器级gpu进行优化.将工作负载部署到新平台,例如手机.嵌入式设备和加速器(例如,FPGA.ASIC)–需要大量手动操作.TVM,一个开源图形级的编译器和算子级优化,提供可移植到不同领域的深度学习工作负载性能硬件后端.TVM解决了特定于深度学习的优化挑战,例如高级算子融合.映射到任意硬件原语,存储潜伏期隐藏.通过采用一种新颖的基于学习的成本建模方法,用于快速探索代码优化.实验表…
T=; sigma=; thetamin=-;thetamax=; theta=zeros(,T); seed=;rand('state',seed);randn('state',seed); theta()=unifrnd(thetamin,thetamax); t=; while t<T t=t+; theta_star=normrnd(theta(t-),sigma); alpha=min([ cauchy(theta_star)/cauchy(theta(t-))]); u=rand;…
第1章 从随机变量采样 研究者提出的概率模型对于分析方法来说通常比较复杂,研究者处理复杂概率模型时越来越依赖计算.数值方法,通过使用计算方法,研究者就不用对一些分析技术做一些不现实的假设(如正态性和独立性). 大多数近似技术的关键是能够从分布中采样.需要采样来预测一个特别的模型在一些情景下是什么样的,找到在实验数据上应用模型的隐变量(参数)的合适值.大部分计算采样方法把从复杂分布采样的问题转化为简单采样分布的子问题.本章我们将介绍两种采样方法:逆变换方法和拒绝采样.这些方法适用于大多数单变量单值…
About Contact Subscribe   Back-propagation, an introduction Sanjeev Arora and Tengyu Ma  •  Dec 20, 2016  •  20 minute read Given the sheer number of backpropagation tutorials on the internet, is there really need for another? One of us (Sanjeev) rec…
The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near July 27, 2015July 27, 2015 Tim Dettmers Deep Learning, NeuroscienceDeep Learning, dendritic spikes, high performance computing, neuroscience, singula…
In the last chapter we saw how neural networks can learn their weights and biases using the gradient descent algorithm. There was, however, a gap in our explanation: we didn't discuss how to compute the gradient of the cost function. That's quite a g…
几个有助于加深对反向传播算法直观理解的网页,包括普通前向神经网络,卷积神经网络以及利用BP对一般性函数求导 A Visual Explanation of the Back Propagation Algorithm for Neural Networks By Sebastian Raschka, Michigan State University. Let's assume we are really into mountain climbing, and to add a little e…