本文章同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90041078   1111 Online Map (30 分)   Input our current position and a destination, an online map can recommend several paths. Now your job is to recommend two paths to your user: one i…
PAT甲级1111. Online Map 题意: 输入我们当前的位置和目的地,一个在线地图可以推荐几条路径.现在你的工作是向你的用户推荐两条路径:一条是最短的,另一条是最快的.确保任何请求存在路径. 输入规格: 每个输入文件包含一个测试用例.对于每种情况, 第一行给出两个正整数N(2 <= N <= 500),M分别是地图上街道交叉路口的总数和街道数.然后M行跟随,每个描述一个街道的格式: V1 V2单程长度时间 其中V1和V2是街道两端的索引(从0到N-1);一- 方式是1,如果街道从V1…
用邻接矩阵 /* 单源最短路径问题2 (Dijkstra算法) 样例: 5 7 0 1 3 0 3 7 1 2 4 1 3 2 2 3 5 2 4 6 3 4 4 输出: [0, 3, 7, 5, 9] */ import java.util.Arrays; import java.util.Scanner; public class Main { //图的顶点数,总边数 static int V, E; //存储所有的边,大小为顶点数 static int[][] Edges; static…
欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 1. 算法的原理 以源点开始,以源点相连的顶点作为向外延伸的顶点,在所有这些向外延伸的顶点中选择距源点最近的顶点继续向四周延伸(某个顶点被选作继续延伸的顶点,则源点到它的最短距离就已经确定,我们也不再将其视为向外延伸的顶点了),如果在继续延伸的过程中遇到了之前已延伸到的顶点,且当前这次延伸过程使其离源点更近,我们就修正这个距离,直到所有的顶点都被视为继续延伸的顶点,此时我们就得到了源点…
Dijkstra算法解决了有向图G=(V,E)上带权的单源最短路径问题,但要求所有边的权值非负. Dijkstra算法是贪婪算法的一个很好的例子.设置一顶点集合S,从源点s到集合中的顶点的最终最短路径的权值均已确定.算法反复选择具有最短路径估计的顶点u,并将u加入到S中,对u 的所有出边进行松弛.如果可以经过u来改进到顶点v的最短路径的话,就对顶点v的估计值进行更新. 如上图,u为源点,顶点全加入到优先队列中. ,队列中最小值为u(值为0),u出队列,对u的出边进行松弛(x.v.w),队列最小值…
Bellman-Ford算法:通过对边进行松弛操作来渐近地降低从源结点s到每个结点v的最短路径的估计值v.d,直到该估计值与实际的最短路径权重相同时为止.该算法主要是基于下面的定理: 设G=(V,E)是一带权重的源结点为s的有向图,其权重函数为W,假设图G中不包含从源结点s可到达的权重为负值的环路,在对图中的每条边执行|V|-1次松弛之后,对于所有从源结点s可到达的结点v,都有. 证明:s可到达结点v并且图中没有权重为负值的环路,所以总能找到一条路径p=(v0,v1,...,vk)是从s到v结点…
描述: 对于图(有向无向都适用),求某一点到其他任一点的最短路径(不能有负权边). 操作: 1. 初始化: 一个节点大小的数组dist[n] 源点的距离初始化为0,与源点直接相连的初始化为其权重,其他为无穷大(INT32_MAX等). 标记源点,其到自身距离是0,已经是最小了. 2. 计算 对于dist,每次选取未标记的最小值(将其标记,表示已经得到最小值),更新与其相连的未标记的点: 如果此点加上权值,小于与其相连的点,则更新之. 代码: 代码并未优化,理解思路即可. #include <st…
PAT甲级1131. Subway Map 题意: 在大城市,地铁系统对访客总是看起来很复杂.给你一些感觉,下图显示了北京地铁的地图.现在你应该帮助人们掌握你的电脑技能!鉴于您的用户的起始位置,您的任务是找到他/她目的地的最快方式. 输入规格: 每个输入文件包含一个测试用例.对于每种情况,第一行包含正整数N(<= 100),地铁线数.然后N行跟随,第i(i = 1,...,N)行以格式描述第i条地铁线: M S [1] S [2] ... S [M] 其中M(<= 100)是停止次数,S [i…
学习博客链接:SPFA 求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm.     SPFA算法是西南交通大学段凡丁于1994年发表的.    从名字我们就可以看出,这种算法在效率上一定有过人之处.     很多时候,给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了.有人称spfa算法是最短路的万能算法. 简洁起见,我们约定有向加权图G不存在负权回路,即最短路…
/*单源最短路径问题1 (Bellman-Ford算法)样例: 5 7 0 1 3 0 3 7 1 2 4 1 3 2 2 3 5 2 4 6 3 4 4 输出: [0, 3, 7, 5, 9] */ import java.util.ArrayList; import java.util.Arrays; import java.util.Scanner; public class Test { //图的顶点数,总边数 static int V, E; //存储所有的边,大小为顶点数 stati…