一. ROC曲线 1.roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性. 横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例:(1-Specificity) 纵轴:真正类率(true postive rate TPR)灵敏度,Sensitivity(正类覆盖率) 2.针对一个二分类问题,将实例分成正类(postive)或者负类(negative).但…
混淆矩阵 构造一个高正确率或高召回率的分类器比较容易,但很难保证二者同时成立 ROC 横轴:FPR(假正样本率)=FP/(FP+TN) 即,所有负样本中被分错的比例 纵轴:TPR(真正样本率)=TP/(TP+FN) 即,所有正样本中被分对的比例 横轴越小越好,纵轴越大越好,即,ROC曲线在斜对角线以下,则表示该分类器效果差于随机分类器,反之,效果好于随机分类器,当然,我们希望ROC曲线尽量除于斜对角线以上,也就是向左上角(0,1)凸. AUC ROC下的面积,即, ROC曲线反映了分类器的分类能…
一. ROC曲线概念 二分类问题在机器学习中是一个很常见的问题,经常会用到.ROC (Receiver Operating Characteristic) 曲线和 AUC (Area Under the Curve) 值常被用来评价一个二值分类器 (binary classifier) 的优劣,Sklearn中对这一函数给出了使用方法: sklearn.metrics.roc_curve(y_true, y_score, pos_label=None, sample_weight=None, d…
分类器性能指标之ROC曲线.AUC值 一 roc曲线 1.roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性. 横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例:(1-Specificity) 纵轴:真正类率(true postive rate TPR)灵敏度,Sensitivity(正类覆盖率) 2针对一个二分类问题,将实例分成正类(postive…
本文整理了关于机器学习分类问题的评价指标——Confusion Matrix.ROC.AUC的概念以及理解. 混淆矩阵 在机器学习领域中,混淆矩阵(confusion matrix)是一种评价分类模型好坏的形象化展示工具.其中,矩阵的每一列表示的是模型预测的样本情况:矩阵的每一行表示的样本的真实情况. 举个经典的二分类例子: 混淆表格:                 混淆矩阵是除了ROC曲线和AUC之外的另一个判断分类好坏程度的方法,通过混淆矩阵我们可以很清楚的看出每一类样本的识别正误情况.…
机器学习性能指标精确率.召回率.F1值.ROC.PRC与AUC 精确率.召回率.F1.AUC和ROC曲线都是评价模型好坏的指标,那么它们之间有什么不同,又有什么联系呢.下面让我们分别来看一下这几个指标分别是什么意思. 针对一个二分类问题,将实例分成正类(postive)或者负类(negative).但是实际中分类时,会出现四种情况. (1)若一个实例是正类并且被预测为正类,即为真正类(True Postive TP) (2)若一个实例是正类,但是被预测成为负类,即为假负类(False Negat…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第18篇文章,我们来看看机器学习领域当中,非常重要的其他几个指标. 混淆矩阵 在上一篇文章当中,我们在介绍召回率.准确率这些概念之前,先讲了TP.FP.FN.和FP这几个值.我们再来简单地回顾一下,我们不能死记硬背这几个指标,否则很容易搞错,并且还容易搞混.我们需要从英文入手来理解,其中的T表示真,可以理解成预测正确,F表示假,也就是预测错误.而P和N表示positive和negative,也就是阴和阳,或者是0和1…
文章目录 1.背景 2.ROC曲线 2.1 ROC名称溯源(选看) 2.2 ROC曲线的绘制 3.AUC(Area Under ROC Curve) 3.1 AUC来历 3.2 AUC几何意义 3.3 AUC计算 3.4 理解AUC的意义 3.4.1 从Mann-Whitney U test角度理解 3.4.2 从AUC计算公式角度理解 3.4.3 一句话介绍AUC 3.5 为什么用AUC 3.6 AUC的一般判断标准 1.背景 很多学习器是为测试样本产生一个实值或概率预测(比如比较简单的逻辑回…
from:https://www.douban.com/note/284051363/?type=like 原帖发表在我的博客:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见[这里](http://bubblexc.com/y2011/148/).这篇博文…
转自:https://www.douban.com/note/284051363/ ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见[这里](http://bubblexc.com/y2011/148/).这篇博文简单介绍ROC和AUC的特点,以及更为深入地,讨论如何作出ROC曲线图以及计算AUC. # ROC曲线需要提前说明的是,我们这里只讨论二值分类器.对于分类器…