python利用sift和surf进行图像配准】的更多相关文章

1.SIFT特征点和特征描述提取(注意opencv版本) 高斯金字塔:O组L层不同尺度的图像(每一组中各层尺寸相同,高斯函数的参数不同,不同组尺寸递减2倍) 特征点定位:极值点 特征点描述:根据不同bin下的方向给定一个主方向,对每个关键点,采用4*4*8共128维向量的描述子进项关键点表征,综合效果最佳: pip uninstall opencv-python pip install opencv-contrib-python==3.4.2.16 1.特征点检测 def sift_kp(ima…
近日在做基于sift特征点的图像配准时遇到匹配失败的情况,失败的原因在于两幅图像分辨率相差有点大,而且这两幅图是不同时间段的同一场景的图片,所以基于sift点的匹配已经找不到匹配点了.然后老师叫我尝试手动选择控制点来支持仿射变换. 很可惜opencv里没有这类似的库,查了下资料,看看有没有现成的手动配准软件,找到了arcgis这款软件可以做手动配准,不过这软件也都太大了吧我要的只是一个简单的功能而已!然后想了想,还是自己写个手动配准工具吧. 首先简单通俗说一下什么是图像配准.先观察一下下面两张图…
以下内容需要直方图均衡化.规定化知识 均衡化:https://blog.csdn.net/macunshi/article/details/79815870 规定化:https://blog.csdn.net/macunshi/article/details/79819263 直方图均衡化应用: 图像直方图均衡化能拉伸灰度图,让像素值均匀分布在0,255之间,使图像看起来不会太亮或太暗,常用于图像增强: 直方图规定化应用: 举个例子,当我们需要对多张图像进行拼接时,我们希望这些图片的亮度.饱和度…
一.实验内容: 利用sift算法,实现全景拼接算法,将给定的两幅图片拼接为一幅. 二.实验环境: 主机配置: CPU :intel core i5-7300 2.50GHZ RAM :8.0GB 运行环境:win10 64位操作系统 开发环境:python3.7   三.核心算法原理: 1.SIFT算法 SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述.这种描述具有尺度不变性,可在图像中检测出关键点,是一种…
Sift和Surf算法实现两幅图像拼接的过程是一样的,主要分为4大部分: 1. 特征点提取和描述 2. 特征点配对,找到两幅图像中匹配点的位置 3. 通过配对点,生成变换矩阵,并对图像1应用变换矩阵生成对图像2的映射图像 4. 图像2拼接到映射图像上,完成拼接 过程1.2.3没啥好说的了,关键看看步骤4中的拼接部分.这里先采用比较简单一点的拼接方式来实现: 1. 找到图像1和图像2中最强的匹配点所在的位置 2. 通过映射矩阵变换,得到图像1的最强匹配点经过映射后投影到新图像上的位置坐标 3. 在…
  图像配准(Image Registration)是计算机视觉中的基本步骤.在本文中,我们首先介绍基于OpenCV的方法,然后介绍深度学习的方法. 什么是图像配准 图像配准就是找到一幅图像像素到另一幅图像像素间的空间映射关系.这些图像可以是不同时间(多时间配准),不同传感器在不同地方拍摄(多模式配准).这些图像之间的空间关系可以是刚性(rigid)^1(平移和旋转),仿射(affine)^2(例如剪切),单应性^3(homographies)或复杂的大变形模型(complex large de…
图像配准需要将一张测试图片按照第二张基准图片的尺寸.角度等形态信息进行透视(仿射)变换匹配,本例通过Surf特征的定位和匹配实现图像配准. 配准流程: 1. 提取两幅图像的Surf特征 2. 对Surf特征进行匹配,找到最匹配的特征点对 3. 提取最优配对点的坐标,生成透视变换矩阵 4. 对测试图像经过透视变换,生成配准图像 以下是Opencv代码实现: #include "highgui/highgui.hpp" #include "opencv2/nonfree/nonf…
(Source:https://blog.sicara.com/image-registration-sift-deep-learning-3c794d794b7a)  图像配准方法概述 图像配准广泛用于遥感,医学图像,计算机视觉等.通常,它的应用根据图像获取方式主要分为四组: 不同视角(多视角分析)——从不同视角获取同一场景图像.其目的是为了获得更大的2D视图或者扫描场景的3D表示.应用示例:遥感-被检区域图像的拼接.计算机视觉-形状恢复(立体形状). 不同时间(多时分析)——从不同时间获取同…
http://www.cnblogs.com/Lemon-Li/p/3504717.html 图像配准算法一般可分为: 一.基于图像灰度统计特性配准算法:二.基于图像特征配准算法:三.基于图像理解的配准算法. 其中,算法类型二最普遍,基于特征的图像配准算法的核心步骤为:1.特征提取.2.特征匹配.3.模型参数估计.4.图像变换和灰度插值(重采样). 图像配准必须得考虑3个问题: 分别是配准时所用到的空间变换模型.配准的相似性测度准则以及空间变换矩阵的寻优方式. 1)空间变换模型,是指的这两幅要配…
目录 sift sift特征简介 sift特征提取步骤 surf surf特征简介 surf特征提取步骤 orb orb特征简介 orb特征提取算法 代码实现 特征提取 特征匹配 附录 sift sift特征简介 SIFT(Scale-Invariant Feature Transform)特征,即尺度不变特征变换,是一种计算机视觉的特征提取算法,用来侦测与描述图像中的局部性特征. 实质上,它是在不同的尺度空间上查找关键点(特征点),并计算出关键点的方向.SIFT所查找到的关键点是一些十分突出.…