首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
拉普拉斯平滑处理 Laplace Smoothing
】的更多相关文章
拉普拉斯平滑处理 Laplace Smoothing
背景:为什么要做平滑处理? 零概率问题,就是在计算实例的概率时,如果某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0.在文本分类的问题中,当一个词语没有在训练样本中出现,该词语调概率为0,使用连乘计算文本出现概率时也为0.这是不合理的,不能因为一个事件没有观察到就武断的认为该事件的概率是0. 拉普拉斯的理论支撑 为了解决零概率的问题,法国数学家拉普拉斯最早提出用加1的方法估计没有出现过的现象的概率,所以加法平滑也叫做拉普拉斯平滑. 假定训练样本很大时,每个分量x的计数加…
拉普拉斯平滑(Laplacian smoothing)
概念 零概率问题:在计算事件的概率时,如果某个事件在观察样本库(训练集)中没有出现过,会导致该事件的概率结果是 $0$ .这是不合理的,不能因为一个事件没有观察到,就被认为该事件一定不可能发生(即该事件的概率为 $0$ ). 拉普拉斯平滑(Laplacian smoothing) 是为了解决零概率的问题. 法国数学家 拉普拉斯 最早提出用 加 $1$ 的方法,估计没有出现过的现象的概率. 理论假设:假定训练样本很大时,每个分量 $x$ 的计数加 $1$ 造成的估计概率变化可以忽略不计,但…
拉普拉斯矩阵(Laplace Matrix)与瑞利熵(Rayleigh quotient)
作者:桂. 时间:2017-04-13 07:43:03 链接:http://www.cnblogs.com/xingshansi/p/6702188.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 前面分析了非负矩阵分解(NMF)的应用,总觉得NMF与谱聚类(Spectral clustering)的思想很相似,打算分析对比一下.谱聚类更像是基于图(Graph)的思想,其中涉及到一个重要概念就是拉普拉斯矩阵(Laplace matrix),想着先梳理一下这个矩阵: 1)拉普拉斯矩阵基…
Naive Bayes Algorithm And Laplace Smoothing
朴素贝叶斯算法(Naive Bayes)适用于在Training Set中,输入X和输出Y都是离散型的情况.如果输入X为连续,输出Y为离散,我们考虑使用逻辑回归(Logistic Regression)或者GDA(Gaussian Discriminant Algorithm). 试想,当我们拿到一个全新的输入X,求解输出Y的分类问题时,相当于,我们要求解概率p(Y|X)这里的X和Y都是向量,我们要根据p(Y|X)的结果,找出可能性最大的那个y值,进行输出.举个经典的垃圾邮件(Spam)分类例子…
标签平滑(Label Smoothing)详解
什么是label smoothing? 标签平滑(Label smoothing),像L1.L2和dropout一样,是机器学习领域的一种正则化方法,通常用于分类问题,目的是防止模型在训练时过于自信地预测标签,改善泛化能力差的问题. 为什么需要label smoothing? 对于分类问题,我们通常认为训练数据中标签向量的目标类别概率应为1,非目标类别概率应为0.传统的one-hot编码的标签向量\(y_i\)为, \[y_i=\begin{cases}1,\quad i=target\\ 0,…
高斯拉普拉斯算子(Laplace of Gaussian)
高斯拉普拉斯(Laplace of Gaussian) kezunhai@gmail.com http://blog.csdn.net/kezunhai Laplace算子作为一种优秀的边缘检测算子,在边缘检测中得到了广泛的应用.该方法通过对图像求图像的二阶倒数的零交叉点来实现边缘的检测,公式表示如下: 由于Laplace算子是通过对图像进行微分操作实现边缘检测的,所以对离散点和噪声比较敏感.于是,首先对图像进行高斯卷积滤波进行降噪处理,再采用Laplace算子进行边缘检测,就可以提高算子对噪声…
拉普拉斯分布(Laplace distribution)
拉普拉斯分布的定义与基本性质 其分布函数为 分布函数图 其概率密度函数为 密度函数图 拉普拉斯分布与正太分布的比较 从图中可以直观的发现拉普拉斯分布跟正太分布很相似,但是拉普拉斯分布比正太分布有尖的峰和轻微的厚尾.…
[置顶] 生成学习算法、高斯判别分析、朴素贝叶斯、Laplace平滑——斯坦福ML公开课笔记5
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9285001 该系列笔记1-5pdf下载请猛击这里. 本篇博客为斯坦福ML公开课第五个视频的笔记,主要内容包括生成学习算法(generate learning algorithm).高斯判别分析(Gaussian DiscriminantAnalysis,GDA).朴素贝叶斯(Navie Bayes).拉普拉斯平滑(Laplace Smoothing).…
Stanford大学机器学习公开课(五):生成学习算法、高斯判别、朴素贝叶斯
(一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解空间中寻找一条直线从而把两种类别的样例分开,对于新的样例,只要判断在直线的哪一侧即可:这种直接对问题求解的方法可以称为判别学习方法. 而生成学习算法则是对两个类别分别进行建模,用新的样例去匹配两个模板,匹配度较高的作为新样例的类别,比如分辨大象(y=1)和狗(y=0),首先,观察大象,然后建立一…
朴素贝叶斯方法(Naive Bayes Method)
朴素贝叶斯是一种很简单的分类方法,之所以称之为朴素,是因为它有着非常强的前提条件-其所有特征都是相互独立的,是一种典型的生成学习算法.所谓生成学习算法,是指由训练数据学习联合概率分布P(X,Y),然后求得后验概率P(X|Y).具体来说,利用训练数据学习P(X|Y)和p(Y)的估计,得到联合概率分布: 概率估计可以是极大似然估计,或者贝叶斯估计. 假设输入 X 为n维的向量集合,输出 Y 为类别,X 和 Y 都是随机变量.P(X,Y)是X和Y的联合概率分布,训练数据集为:…