[Java] 数据分析--数据预处理】的更多相关文章

数据结构 键-值对:HashMap 1 import java.io.File; 2 import java.io.FileNotFoundException; 3 import java.util.HashMap; 4 import java.util.Scanner; 5 6 public class HashMapExample { 7 public static void main(String[] args) { 8 File dataFile = new File("data/Cou…
使用pandas库操作excel,csv表格操作大全 关注公众号"轻松学编程"了解更多,文末有公众号二维码,可以扫码关注哦. 前言 准备三份csv表格做演示: 成绩表.csv subjects 小红 小强 小明 小兰 小刚 语文 65 76 90 80 90 数学 45 43 87 88 45 英语 99 86 86 80 86 成绩表1.csv subjects 小红 小强 小明 小夏 小兰 小王 小刚 小亮 生物 78 67 78 89 77 76 98 100 地理 90 98…
时间序列 需求:将一组字符顺序添加到时间序列中 实现:定义时间序列类TimeSeries,包含静态类Entry表示序列类中的各项,以及add,get,iterator,entry方法 TimeSeries.java 1 import java.util.ArrayList; 2 import java.util.Iterator; 3 import java.util.Map; 4 import java.util.TreeMap; 5 import java.util.concurrent.T…
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学…
Colab连接与数据预处理 Colab连接方法见上一篇博客 数据预处理: import pandas as pd import pickle import numpy as np # 训练数据和测试数据路径 train_path = './security_train.csv' test_path = './security_test.csv' # 将csv格式的训练数据处理为txt文本,只包含文件标签和api序列 def read_train_file(path): labels = [] #…
来源:http://blog.sina.com.cn/s/blog_13171a73d0102v4zx.html 数据预处理主要包括数据导入.电极定位.电极返回.滤波.去除伪迹.重建参考.分段.叠加平均等步骤.只有经过预处理的数据,才能进行特征值提取以进一步进行方差分析等操作.EEGLAB对数据处理的优点无需赘述.很多情况下,后续被试的预处理与第一个被试的处理过程是一样的.在这种情况下就可以采用批处理的方式进行,以便减少处理数据的时间并保持数据间参数的一致性,有利于后续数据的统计分析.在此主要有…
最难毕业季,2017高校毕业生达到795万,许多学生面临着毕业即失业的尴尬.面对着与日俱增的竞争形势和就业压力,很多毕业生选择去知了堂学习社区镀金,以提高自己的就业竞争力,其中Java大数据是学生选择的热门课程之一. 为什么选择Java大数据? 大数据毫无疑问是2017年最热门的方向,学习Java大数据的同学,进可掘金大数据,退亦可在Java就业岗位上谋得一席之地. Java大数据应用领域 Java大数据的应用领域非常的广泛,可以简单分为几类: 基础大数据服务平台,大中型的商业应用包括我们常说的…
互联网创造了大数据应用的规模化环境,大数据应用成功的案例大都是在互联网上发生的, 互联网业务提供了数据,互联网企业开发了处理软件,互联网企业的创新带来了大数据应用 的活跃,没有互联网便没有今天的大数据产业.没有互联网.云计算.物联网.移动终端与 人工智能组合的环境大数据也没那么重要.大数据的价值并非与生俱来而是应用创新之结果 ,价值是由技术组合创新涌现出来的.离开环境的支持大数据毫无价值,就像离开了身体的 手不再有手的功能一样.   随着2017年大数据各种应用的发展,大数据的价值得以充分的发挥…
数据预处理是指因为算法或者分析需要,对经过数据质量检查后的数据进行转换.衍生.规约等操作的过程.整个数据预处理工作主要包括五个方面内容:简单函数变换.标准化.衍生虚拟变量.离散化.降维.本文将作展开介绍,并提供基于Python的代码实现. 1. 简单函数变换 简单函数变换是指对原始数据直接使用某些数学函数进行转换,主要用于将不具有正态分布的数据变换成具有正态分布,同时也可以用于对数据进行压缩,比如\(10^8和10^9\)更关注的是相对差距而不是绝对差距,可以通过取对数变换实现. 常用的函数包括…
数据预处理 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization(这里指移除均值和方差标准化) 标准化是很多数据分析问题的一个重要步骤,也是很多利用机器学习算法进行数据处理的必要步骤. 1.1 z-score标准化 z-score标准化指的是将数据转化成均值为0方差为1的高斯分布,也就是通常说的z-score标准化,但是对于不服从标准正态分布的特征,这样做效果会…
数据预处理主要包括数据清洗.数据集成.数据变换和数据规约,处理过程如图所示. 一.数据清洗 1.缺失值处理:删除.插补.不处理 ## 拉格朗日插值代码(使用缺失值前后各5个未缺失的数据建模) import pandas as pd #导入数据分析库Pandas from scipy.interpolate import lagrange #导入拉格朗日插值函数 inputfile = '../data/catering_sale.xls' #销量数据路径 outputfile = '../tmp…
preface 在上一章节我们聊了python大数据分析的基本模块,下面就说说2个项目吧,第一个是进行淘宝商品数据的挖掘,第二个是进行文本相似度匹配.好了,废话不多说,赶紧上车. 淘宝商品数据挖掘 数据来源: 自己写个爬虫爬吧,爬到后入库(mysql). 数据清洗: 所谓的数据清洗,就是把一些异常的.缺失的数据处理掉,处理掉不一定是说删除,而是说通过某些方法将这个值补充上去,数据清洗目的在于为了让我们数据的可靠,因为脏数据会对数据分析产生影响. 拿到数据后,我们进行数据清洗分为两方面: 缺失值发…
https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization(这里指移除均值和方差标准化) 标准化是很多数据分析问题的一个重要步骤,也是很多利用机器学习算法进行数据处理的必要步骤. 1.1 z-s…
pandas数据预处理 / pandas data pre-processing 目录 关于 pandas pandas 库 pandas 基本操作 pandas 计算 pandas 的 Series pandas 常用函数 补充内容 1 关于pandas / About pandas Pandas起源 Python Data Analysis Library或pandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效…
作者 灯塔大数据 本文转自公众号灯塔大数据(DTbigdata),转载需授权 如果你对各种数据类的科学课题感兴趣,你就来对地方了.本文将给大家介绍让你成为优秀数据科学家的42个步骤.深入掌握数据准备,机器学习,SQL数据科学等. 本文将这42步骤分为六个部分, 前三个部分主要讲述从数据准备到初步完成机器学习的学习过程,其中包括对理论知识的掌握和Python库的实现. 第四部分主要是从如何理解的角度讲解深入学习的方法.最后两部分则是关于SQL数据科学和NoSQL数据库. 接下来让我们走进这42步进…
在拿到一份数据准备做挖掘建模之前,首先需要进行初步的数据探索性分析(你愿意花十分钟系统了解数据分析方法吗?),对数据探索性分析之后要先进行一系列的数据预处理步骤.因为拿到的原始数据存在不完整.不一致.有异常的数据,而这些“错误”数据会严重影响到数据挖掘建模的执行效率甚至导致挖掘结果出现偏差,因此首先要数据清洗.数据清洗完成之后接着进行或者同时进行数据集成.转换.归一化等一系列处理,该过程就是数据预处理.一方面是提高数据的质量,另一方面可以让数据更好的适应特定的挖掘模型,在实际工作中该部分的内容可…
原文链接 简介 为发挥 SIMD1 的最大作用,除了对其进行矢量化处理2外,我们还需作出其他努力.可以尝试为循环添加 #pragma omp simd3,查看编译器是否成功进行矢量化,如果性能有所提升,则达到满意状态. 然而,可能性能根本不会提升,甚至还会降低. 无论处于何种情况,为了最大限度发挥 SIMD 执行的优势并实现性能提升,通常需要重新设计算法和数据布局,以便生成的 SIMD 代码尽可能高效. 另外还可收到额外的效果,即标量(非矢量化)版代码会表现得更好. 本文将通过一个 3D 动画算…
R语言进行数据预处理wranging li_volleyball 2016年3月22日 data wrangling with R packages:tidyr dplyr Ground rules library(tidyr) library(dplyr) ## ## Attaching package: 'dplyr' ## The following objects are masked from 'package:stats': ## ## filter, lag ## The foll…
preprocessing 模块提供了数据预处理函数和预处理类,预处理类主要是为了方便添加到 pipeline 过程中. 数据标准化 标准化预处理函数: preprocessing.scale(X, axis=0, with_mean=True, with_std=True, copy=True): 将数据转化为标准正态分布(均值为0,方差为1) preprocessing.minmax_scale(X, feature_range=(0, 1), axis=0, copy=True): 将数据…
理论知识:UFLDL数据预处理和http://www.cnblogs.com/tornadomeet/archive/2013/04/20/3033149.html 数据预处理是深度学习中非常重要的一步!如果说原始数据的获得,是深度学习中最重要的一步,那么获得原始数据之后对它的预处理更是重要的一部分. 1.数据预处理的方法: ①数据归一化: 简单缩放:对数据的每一个维度的值进行重新调节,使其在 [0,1]或[ − 1,1] 的区间内 逐样本均值消减:在每个样本上减去数据的统计平均值,用于平稳的数…
java 线程数据同步 由买票实例 //java线程实例 //线程数据同步 //卖票问题 //避免重复卖票 //线程 class xc1 implements Runnable{ //定义为静态,可以使多个对象使用同一个数据 public static int chepiao = 10; //车票总数 public static String aa = new String("123"); //字符串随意定义,定义在函数上面 public void run(){ while(true)…
一.日期时间.字符串的处理 日期 Date: 日期类,年与日 POSIXct: 日期时间类,精确到秒,用数字表示 POSIXlt: 日期时间类,精确到秒,用列表表示 Sys.date(), date(), difftime(), ISOdate(), ISOdatetime() #得到当前日期时间 (d1=Sys.Date()) #日期 年月日 (d3=Sys.time()) #时间 年月日时分秒 通过format输出指定格式的时间 (d2=date()) #日期和时间 年月日时分秒 "Fri…
java将数据写入到txt文件中,这个应该对于学过java I/O的人来说是很简单的事情了,但是如果要将数据以固定的格式写入到txt文件中,就需要一定的技巧了. 这里举个简单的例子,以供参考: 比如我要将数据写成下面的样子: 1      |      2      |        3       |        4 5      |      6      |        8       |        9 也许看起来很简单的,因为每个数据所代表的长度是不一样的,也有可能编码不一样,所…
Weka数据预处理(一) 对于数据挖掘而言,我们往往仅关注实质性的挖掘算法,如分类.聚类.关联规则等,而忽视待挖掘数据的质量,但是高质量的数据才能产生高质量的挖掘结果,否则只有"Garbage in garbage out"了.保证待数据数据质量的重要一步就是数据预处理(Data Pre-Processing),在实际操作中,数据准备阶段往往能占用整个挖掘过程6~8成的时间.本文就weka工具中的数据预处理方法作一下介绍. Weka 主要支持一种ARFF格式的数据,含有很多数据过滤方法…
JAVA 大数据内存耗用测试import java.lang.management.ManagementFactory;import java.lang.management.MemoryMXBean; public class MemoryTest { public static void main(String[] args) throws InterruptedException { int row = 50_000; int column = 20; String[] data = ne…
数据预处理没有统一的标准,只能说是根据不同类型的分析数据和业务需求,在对数据特性做了充分的理解之后,再选择相关的数据预处理技术,一般会用到多种预处理技术,而且对每种处理之后的效果做些分析对比,这里面经验的成分比较大,即使是声称数据挖掘专家的人可能在某一个方面研究得很深入,但面对新的应用情况和数据,一开始他也不可能很有把握地说能挖掘出有价值的东西,数据挖掘这个术语原来也叫数据采矿,就好比采矿,需要耐心,需要经验,学要总结.其本身是一个综合学科:人工智能,机器学习,数据库,统计学等学科的大综合.个人…
关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常用的最小最大规范化方法(x-min(x))/(max(x)-min(x)) 除了上述介绍的方法之外,另一种常用的方法是将属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 使用这种方法的目的包括: 1.对于方差非常小的属性可以增强…
对数据按列属性进行scale处理后,每列的数据均值变成0,标准差变为1.可通过下面的例子加深理解: from sklearn import preprocessing import numpy as np 测试数据: X = np.array([[1., -1., 2.], [2., 0., 0.], [0., 1., -1.]]) 使用sklearn进行scale处理时,有两种方式可供选择. 方式1:直接使用preprocessing.scale()方法: X_scaled = preproc…
前言 这部分也许是数据预处理最为关键的一个阶段. 如何对数据降维是一个很有挑战,很有深度的话题,很多理论书本均有详细深入的讲解分析. 本文仅介绍主成分分析法(PCA)和探索性因子分析法(EFA),并给出具体的实现步骤. 主成分分析法 - PCA 主成分分析(principal components analysis, PCA)是一种分析.简化数据集的技术. 它把原始数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次…
未来10年将是大数据,人工智能爆发的时代,到时将会有大量的企业需要借助大数据,而Java最大的优势就是它在大数据领域的地位,目前很多的大数据架构都是通过Java来完成的. 在这个Android.iOS相继没落,PHP相继饱和的时候,只有Java大数据保持着旺盛的需求.那么,Java大数据需要学习什么技术呢? 首先我们要学习Java语言和Linux操作系统.很多人入门编程语言就是Java,你或许还不知道Java的方向有JavaSE.JavaEE.JavaME,学习Java大数据需要学习JavaSE…