0x0 需求 消费Kafka的日志并写入ElasticSearch供查询 0x1 依赖库 golang版Kafka客户端 https://github.com/Shopify/sarama golang版ElasticSearch客户端  https://github.com/elastic/go-elasticsearch 0x2 实现 总共分3部分 1.Kafka消费者 // LogJson json格式 type LogJson struct { Tag string `json:"tag…
kafka日志同步至elasticsearch和kibana展示 一 kafka consumer准备 前面的章节进行了分布式job的自动计算的概念讲解以及实践.上次分布式日志说过日志写进kafka,是需要进行处理,以便合理的进行展示,分布式日志的量和我们对日志的重视程度,决定了我们必须要有一个大数据检索,和友好展示的需求.那么自然就是elasticsearch和kibana,elasticsearch是可以检索TB级别数据的一个分布式NOSQL数据库,而kibana,不仅仅可以展示详情,而且有…
架构.分布式.日志队列,标题自己都看着唬人,其实就是一个日志收集的功能,只不过中间加了一个Kafka做消息队列罢了. kafka介绍 Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写.Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据. 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素. 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决. 特性 Kafka是一种高吞…
大致架构 * 每个应用实例部署一个日志agent * agent实时将日志发送到kafka * storm实时计算日志 * storm计算结果保存到hbase storm消费kafka 创建实时计算项目并引入storm和kafka相关的依赖 <dependency> <groupId>org.apache.storm</groupId> <artifactId>storm-core</artifactId> <version>1.0.…
前言 在游戏项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏欢迎补充来踩,我会第一时…
本文将会介绍如何使用 Flume.log4j.Kafka进行规范的日志采集. Flume 基本概念 Flume是一个完善.强大的日志采集工具,关于它的配置,在网上有很多现成的例子和资料,这里仅做简单说明不再详细赘述.Flume包含Source.Channel.Sink三个最基本的概念: Source——日志来源,其中包括:Avro Source.Thrift Source.Exec Source.JMS Source.Spooling Directory Source.Kafka Source.…
使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以保存Direct方式的offset,但是可能会导致频繁写HDFS占用IO),所以每次出现问题的时候,重启程序,而程序的消费方式是Direct,所以在程序down掉的这段时间Kafka上的数据是消费不到的,虽然可以设置offset为smallest,但是会导致重复消费,重新overwrite hive…
from:https://my.oschina.net/jastme/blog/600573 flume+kafka+zookeeper 日志收集平台的搭建 收藏 jastme 发表于 10个月前 阅读 830 收藏 11 点赞 1 评论 0 摘要: flume+kafka+zookeeper 日志收集平台的搭建 首先说明下我的目的是什么,我的目的是单纯的收集nginx的日志以及各种应用程序的日志 nginx 日志 预留的位置 flume 和 kafka这个大小的作用是什么我就不再说了,大家去自…
ELK+kafka构建日志收集系统   原文  http://lx.wxqrcode.com/index.php/post/101.html   背景: 最近线上上了ELK,但是只用了一台Redis在中间作为消息队列,以减轻前端es集群的压力,Redis的集群解决方案暂时没有接触过,并且Redis作为消息队列并不是它的强项:所以最近将Redis换成了专业的消息信息发布订阅系统Kafka, Kafka的更多介绍大家可以看这里: 传送门 ,关于ELK的知识网上有很多的哦, 此篇博客主要是总结一下目前…
此文档只关心消费接入,不关心日志接入,只关心消费如何接入,可直接跳转到[sdk消费接入] SLS简介 日志服务: 日志服务(Log Service,简称 LOG)是针对日志类数据的一站式服务,在阿里巴巴集团经历大量大数据场景锤炼而成.您无需开发就能快捷完成日志数据采集.消费.投递以及查询分析等功能,提升运维.运营效率,建立 DT 时代海量日志处理能力 功能 实时采集与消费(LogHub) 投递数仓(LogShipper) 查询与实时分析(Search/Analytics) 接入消费流程 产品主页…
背景: 最近线上上了ELK,但是只用了一台Redis在中间作为消息队列,以减轻前端es集群的压力,Redis的集群解决方案暂时没有接触过,并且Redis作为消息队列并不是它的强项:所以最近将Redis换成了专业的消息信息发布订阅系统Kafka, Kafka的更多介绍大家可以看这里:传送门  ,关于ELK的知识网上有很多的哦, 此篇博客主要是总结一下目前线上这个平台的实施步骤,ELK是怎么跟Kafka结合起来的.好吧,动手! ELK架构拓扑: 然而我这里的整个日志收集平台就是这样的拓扑: 1,使用…
一.前言 NET Core越来越受欢迎,因为它具有在多个平台上运行的原始.NET Framework的强大功能.Kafka正迅速成为软件行业的标准消息传递技术.这篇文章简单介绍了如何使用.NET(Core)和Kafka实现NLog的Target. 在日常项目开发过程中,Java体系下Spring Boot + Logback很容易就接入了Kafka实现了日志收集,在.NET和.NET Core下一直习惯了使用NLog作为日志组件.为了让微服务环境中dotnet和java的服务都统一的进行日志收集…
spark streaming从指定offset处消费Kafka数据 -- : 770人阅读 评论() 收藏 举报 分类: spark() 原文地址:http://blog.csdn.net/high2011/article/details/53706446 首先很感谢原文作者,看到这篇文章我少走了很多弯路,转载此文章是为了保留一份供复习用,请大家支持原作者,移步到上面的连接去看,谢谢 一.情景:当Spark streaming程序意外退出时,数据仍然再往Kafka中推送,然而由于Kafka默认…
现在使用的比较常用的日志分析系统有Splunk和Elk,Splunk功能齐全,处理能力强,但是是商用项目,而且收费高.Elk则是Splunk项目的一个开源实现,Elk是ElasticSearch(Es).Logstash.Kibana上个项目结合.Es就是基于Lucene的存储,索引的搜索引擎:logstash是提供输入输出及转化处理插件的日志标准化管道:Kibana提供可视化和查询统计的用户界面.往往这些开源项目并不是适合每一个公司的业务,业务不同,对开源项目扩展也就不同,logstash进行…
Kafka的安装与启动 kafka中涉及的名词 消息记录:由一个key,一个value和一个时间戳构成,消息最终存储在主题下的分区中,记录在生产中称为生产者记录,在消费者中称为消费记录.Kafka集群保持了所有发布的消息,直到它们过期,无论消息是否被消费了,在一个可配置的时间段内,Kafka集群保留了所有发布的消息.比如消息的保存策略被设置为2天,那么在一个消息被发布的两天时间内,它都是可以被消费的.Kafka的性能是和数据量无关的常量级的,所以保留太多数据并不是问题 生成者:生产者用于发布消息…
微服务日志之.NET Core使用NLog通过Kafka实现日志收集 https://www.cnblogs.com/maxzhang1985/p/9522017.html 一.前言 NET Core越来越受欢迎,因为它具有在多个平台上运行的原始.NET Framework的强大功能.Kafka正迅速成为软件行业的标准消息传递技术.这篇文章简单介绍了如何使用.NET(Core)和Kafka实现NLog的Target. 在日常项目开发过程中,Java体系下Spring Boot + Logback…
一.概述 上次写这篇文章文章的时候,Spark还是1.x,kafka还是0.8x版本,转眼间spark到了2.x,kafka也到了2.x,存储offset的方式也发生了改变,笔者根据上篇文章和网上文章,将offset存储到Redis,既保证了并发也保证了数据不丢失,经过测试,有效. 二.使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以保存Dire…
概述 本文介绍使用ELK(elasticsearch.logstash.kibana) + kafka来搭建一个日志系统.主要演示使用spring aop进行日志收集,然后通过kafka将日志发送给logstash,logstash再将日志写入elasticsearch,这样elasticsearch就有了日志数据了,最后,则使用kibana将存放在elasticsearch中的日志数据显示出来,并且可以做实时的数据图表分析等等. 详细 代码下载:http://www.demodashi.com…
有两种:Direct直连方式.Receiver方式 1.Receiver方式: 使用kafka高层次的consumer API来实现,receiver从kafka中获取的数据都保存在spark excutor的内存中,然后由Spark Streaming启动的job来处理数据.因此一旦数据量暴增,很容易造成内存溢出. 并且,在默认配置下,这种方式可能会因为底层失败而造成数据丢失,如果要启用高可靠机制,确保零数据丢失,要启用Spark Streaming的预写日志机制(Write Ahead Lo…
1.创建拓扑,配置KafkaSpout.Bolt KafkaTopologyBasic.java: package org.mort.storm.kafka; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.storm.Config; import org.apache.storm.…
1.概述 最近有同学留言咨询,Flink消费Kafka的一些问题,今天笔者将用一个小案例来为大家介绍如何将Kafka中的数据,通过Flink任务来消费并存储到HDFS上. 2.内容 这里举个消费Kafka的数据的场景.比如,电商平台.游戏平台产生的用户数据,入库到Kafka中的Topic进行存储,然后采用Flink去实时消费积累到HDFS上,积累后的数据可以构建数据仓库(如Hive)做数据分析,或是用于数据训练(算法模型).如下图所示: 2.1 环境依赖 整个流程,需要依赖的组件有Kafka.F…
简介 在很多数据采集场景下,Flume作为一个高性能采集日志的工具,相信大家都知道它.许多人想起Flume这个组件能联想到的大多数都是Flume跟Kafka相结合进行日志的采集,这种方案有很多他的优点,比如高性能.高吞吐.数据可靠性等.但是我们如果要求对日志进行实时的采集,这显然不是一个好的解决方案.原因如下: 就目前来说,Flume能支持实时监控一个目录的数据文件,一旦对某个目录的文件采集完成,就会打上completed的标志,若之后再有数据进入这个文件中,Flume则不会检测到. 所以,我们…
目录 0.目的 1.本地测试 2.线上测试 提交作业 0.目的 测试flink消费kafka的几种消费策略 kafkaSource.setStartFromEarliest() //从起始位置 kafkaSource.setStartFromLatest() //从最新位置 kafkaSource.setStartFromTimestamp("起始时间") //从指定时间开始消费 kafkaSource.setStartFromGroupOffsets() //默认 kafkaSour…
目录 说明 整体逻辑 offset建表语句 代码实现 说明 当前处理只实现手动维护offset到mysql,只能保证数据不丢失,可能会重复 要想实现精准一次性,还需要将数据提交和offset提交维护在一个事务中 官网说明 Your own data store For data stores that support transactions, saving offsets in the same transaction as the results can keep the two in sy…
概述 日志段及其相关代码是 Kafka 服务器源码中最为重要的组件代码之一.你可能会非常关心,在 Kafka 中,消息是如何被保存和组织在一起的.毕竟,不管是学习任何消息引擎,弄明白消息建模方式都是首要的问题.因此,你非常有必要学习日志段这个重要的子模块的源码实现.今天,我会带你详细看下日志段部分的源码.不过在此之前,你需要先了解一下 Kafka 的日志结构日志是 Kafka 服务器端代码的重要组件之一,很多其他的核心组件都是以日志为基础的,比如后面要讲到的状态管理机和副本管理器等. 总的来说,…
Windows 系统下json 格式的日志文件发送到elasticsearch配置 Nxlog-->logstash-->ElasticSearch Logstash https://www.elastic.co/guide/en/logstash/current/codec-plugins.html Elasticsearch https://www.elastic.co/guide/en/elasticsearch/guide/current/index.html Kibana https…
ELK日志系统:Elasticsearch + Logstash + Kibana 搭建教程 系统架构 安装配置JDK环境 JDK安装(不能安装JRE) JDK下载地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 下载包:jdk-8u131-linux-x64.rpm yum localinstall jdk-8u131-linux-x64.rpm mvn 安装 cd /u…
1. 完成的场景 在很多大数据场景下,要求数据形成数据流的形式进行计算和存储.上篇博客介绍了Flink消费Kafka数据实现Wordcount计算,这篇博客需要完成的是将实时计算的结果写到redis.当kafka从其他端获取数据立刻到Flink计算,Flink计算完后结果写到Redis,整个过程就像流水一样形成了数据流的处理 2. 代码 添加第三方依赖 <dependencies> <!-- https://mvnrepository.com/artifact/org.apache.fl…
一.操作日志 首先附上kafka 操作日志配置文件:log4j.properties 根据相应的需要设置日志. #日志级别覆盖规则 优先级:ALL < DEBUG < INFO <WARN < ERROR < FATAL < OFF #1.子日志log4j.logger会覆盖主日志log4j.rootLogger,这里设置的是日志输出级别,Threshold设置appender的日志接收级别: #2.log4j.logger级别低于Threshold,appender接…
戳更多文章: 1-Flink入门 2-本地环境搭建&构建第一个Flink应用 3-DataSet API 4-DataSteam API 5-集群部署 6-分布式缓存 7-重启策略 8-Flink中的窗口 9-Flink中的Time Flink时间戳和水印 Broadcast广播变量 FlinkTable&SQL Flink实战项目实时热销排行 Flink写入RedisSink 17-Flink消费Kafka写入Mysql 本文介绍消费Kafka的消息实时写入Mysql. maven新增依…