分布式ID常见生成策略: 分布式ID生成策略常见的有如下几种: 数据库自增ID. UUID生成. Redis的原子自增方式. 数据库水平拆分,设置初始值和相同的自增步长. 批量申请自增ID. 雪花算法. 百度UidGenerator算法(基于雪花算法实现自定义时间戳). 美团Leaf算法(依赖于数据库,ZK). 本文主要介绍SnowFlake 算法,是 Twitter 开源的分布式 id 生成算法. 其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 id.在分布式系统中…
雪花算法是一种生成分布式全局唯一ID的经典算法,关于雪花算法的解读网上多如牛毛,大多抄来抄去,这里请参考耕耘的小象大神的博客ID生成器,Twitter的雪花算法(Java) 网上的教程一般存在两个问题: 1. 机器ID(5位)和数据中心ID(5位)配置没有解决,分布式部署的时候会使用相同的配置,任然有ID重复的风险. 2. 使用的时候需要实例化对象,没有形成开箱即用的工具类. 本文针对上面两个问题进行解决,笔者的解决方案是,workId使用服务器hostName生成,dataCenterId使用…
以JAVA为例 Twitter分布式自增ID算法snowflake,生成的是Long类型的id,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特(0和1). 那么一个Long类型的64个比特, twitter是这样分配的:正数位(占1比特)+时间戳(占41比特)+机械id(占5比特)+数据中心(占5比特)+自增值(占12比特),总共64比特组成的一个Long类型. 时间戳(占41个比特):毫秒数,大约可以使使用69年 机械id(占5个比特):即2的5次方等于32…
在我们的工作中,数据库某些表的字段会用到唯一的,趋势递增的订单编号,我们将介绍两种方法,一种是传统的采用随机数生成的方式,另外一种是采用当前比较流行的“分布式唯一ID生成算法-雪花算法”来实现. 一.时间戳随机数生成唯一ID 我们写一个for循环,用RandomUtil.generateOrderCode()生成1000个唯一ID,执行结果我们会发现出现重复的ID. /** * 随机数生成util **/ public class RandomUtil { private static fina…
Twitter分布式自增ID算法snowflake,生成的是Long类型的id,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特(0和1). 那么一个Long类型的64个比特, twitter是这样分配的:正数位(占1比特)+时间戳(占41比特)+机械id(占5比特)+数据中心(占5比特)+自增值(占12比特),总共64比特组成的一个Long类型. 时间戳(占41个比特):毫秒数,大约可以使使用69年 机械id(占5个比特):即2的5次方等于32个机器 数据中心…
详解Twitter开源分布式自增ID算法snowflake,附演算验证过程 2017年01月22日 14:44:40 url: http://blog.csdn.net/li396864285/article/details/54668031 1.snowflake简介 互联网快速发展的今天,分布式应用系统已经见怪不怪,在分布式系统中,我们需要各种各样的ID,既然是ID那么必然是要保证全局唯一,除此之外,不同当业务还需要不同的特性,比如像并发巨大的业务要求ID生成效率高,吞吐大:比如某些银行类业…
1.Snowflake简介 互联网快速发展的今天,分布式应用系统已经见怪不怪,在分布式系统中,我们需要各种各样的ID,既然是ID那么必然是要保证全局唯一,除此之外,不同当业务还需要不同的特性,比如像并发巨大的业务要求ID生成效率高,吞吐大:比如某些银行类业务,需要按每日日期制定交易流水号:又比如我们希望用户的ID是随机的,无序的,纯数字的,且位数长度是小于10位的.等等,不同的业务场景需要的ID特性各不一样,于是,衍生了各种ID生成器,但大多数利用数据库控制ID的生成,性能受数据库并发能力限制,…
分布式ID生成是目前系统的常见刚需,其中以Twitter的雪花算法(Snowflake)比较知名,有Java等各种语言的版本及各种改进版本,能生成满足分布式ID,返回ID为Long长整数 但是这里有一个坑,雪花算法产生的长整数的精度可能超过javascript能表达的精度,这会导致js获取的id与雪花算法算出来的id不一致,如雪花算法得到的是36594866121080832,但是因为javascript丢失精度后只获取到36594866121080830, 这会导致对数据的所有操作都失效. 解…
基于Java实现的适用于分布式ID的雪花算法工具类,这里存一下日后好找 /** * 雪花算法生成ID */ public class SnowFlakeUtil { private final static long START_STMP = 1543903501000L; private final static long SEQUENCE_BIT = 12; //序列号占用的位数 private final static long MACHINE_BIT = 5; //机器标识占用的位数 p…
/** * ID生成 雪花算法 */ public class SnowFlake { public static SnowFlake getInstance() { return SingletonSnowFlake.instance; } private static class SingletonSnowFlake { private static final SnowFlake instance = new SnowFlake(1,1); } /** * 起始的时间戳 */ privat…
https://blog.csdn.net/wangming520liwei/article/details/80843248 ID 生成器 雪花算法 2018年06月28日 14:58:43 wangxiaoming 阅读数:928   我们的业务需求中通常有需要一些唯一的ID,来记录我们某个数据的标识: 某个用户的ID 某个订单的单号 某个信息的ID 看图理解 详细的看代码注释 1bit:一般是符号位,不做处理 41bit:用来记录时间戳,这里可以记录69年,如果设置好起始时间比如今年是20…
一般情况,实现全局唯一ID,有三种方案,分别是通过中间件方式.UUID.雪花算法. 方案一,通过中间件方式,可以是把数据库或者redis缓存作为媒介,从中间件获取ID.这种呢,优点是可以体现全局的递增趋势(优点只能想到这个),缺点呢,倒是一大堆,比如,依赖中间件,假如中间件挂了,就不能提供服务了:依赖中间件的写入和事务,会影响效率:数据量大了的话,你还得考虑部署集群,考虑走代理.这样的话,感觉问题复杂化了 方案二,通过UUID的方式,java.util.UUID就提供了获取UUID的方法,使用U…
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_155 但凡说起分布式系统,我们肯定会对一些海量级的业务进行分拆,比如:用户表,订单表.因为数据量巨大一张表完全无法支撑,就会对其进行分库分表.但是一旦涉及到分库分表,就会引申出分布式系统中唯一主键ID的生成问题,当我们使用mysql的自增长主键(auto_increment)时,充分感受到了它的好处:整个系统ID唯一,ID是数字类型,而且是趋势递增的,ID简短,查询效率快,在分布式系统中显然由于单点问题无法使用mysql自增长…
分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的,作为索引非常不好,严重影响性能. snowflake的结构如下(每部分用-分开): 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 第一个部分,是 1 个 bit:0,这个是无意义的. 第二个部分是 41 个 bit:表…
工具类:  package com.ihrm.common.utils; import java.lang.management.ManagementFactory; import java.net.InetAddress; import java.net.NetworkInterface; //雪花算法代码实现 public class IdWorker { // 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动) private final static long twepo…
snowflake 分布式场景下获取自增id git:https://github.com/twitter/snowflake 解读: http://www.cnblogs.com/relucent/p/4955340.html…
在微服务架构,分布式系统中的操作会有一些全局性ID的需求,所以我们不能用数据库本身的自增功能来产生主键值,只能由程序来生成唯一的主键值.我们采用的是twitter的snokeflake(雪花)算法. 说明 程序snokeflake会生成一个64bit的数据,结构如下 最后12位的序列号容纳的大小为4096,同一毫秒,同个机器产生超过这个数的ID,就会自动等待一毫秒,进入下一个时间戳继续计数. 代码 import java.lang.management.ManagementFactory; im…
目录 简介 产生背景 使用方式 原始版 完美版 测试 结尾 简介 IdHelper是一个.NET(支持.NET45+或.NET Standard2+)生成分布式趋势自增Id组件,有两个版本:原始版为基于雪花Id(不了解请自行百度)方案,需要手动管理设置WorkerId:完美版在原始版的基础上使用Zookeeper来解决原始版中的WorkerId的分配问题和时间回拨问题. 原始版安装方式:Nuget安装IdHelper即可 完美版安装方式:Nuget安装IdHelper.Zookeeper即可 请…
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成. 而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移到Cassandra,因为Cassandra没有顺序ID生成机制,所以开发了这样一套全局唯一ID生成服务. 结构 snowflake的结构如下(每部分用…
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成. 而snowflake解决了这种需求,开发这样一套全局唯一ID生成服务. 结构 snowflake的结构如下(每部分用-分开): 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 -…
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成. 而TWitter的snowflake解决了这种需求,最初TWitter把存储系统从MySQL迁移到Cassandra,因为Cassandra没有顺序ID生成机制,所以开发了这样一套全局唯一ID生成服务. 结构 snowflake的结构如下(每部分用…
概述 snowflake是Twitter开源的分布式ID生成算法,结果是一个Long型的ID.其核心思想是:使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器ID),12bit作为毫秒内的序列号(意味着每个节点在每毫秒可以产生 4096 个 ID),最后还有一个符号位,永远是0. 特点: 作为ID,肯定是唯一的: 自增,依赖时间戳生成,序列号有序递增: 支持非常大的业务ID生成,最大支持2^10=1024个业务节点,同一个节点一毫秒最多生成2^12=409…
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的.有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成.而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移到Cassandra,因为Cassandra没有顺序ID生成机制,所以开发了这样一套全局唯一ID生成服务. 该项目地址为:https://github.co…
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的.有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成.而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移到Cassandra,因为Cassandra没有顺序ID生成机制,所以开发了这样一套全局唯一ID生成服务. 该项目地址为:https://github.co…
概述 前一篇文章讲述了最流行的分布式ID生成算法snowflake,本篇文章根据美团点评分布式ID生成系统文章,介绍另一种相对更容易理解和编写的分布式ID生成方式. 实现原理 Leaf这个名字是来自德国哲学家.数学家莱布尼茨的一句话: There are no two identical leaves in the world "世界上没有两片相同的树叶" 设置数据表主键自增是最简单的方案,缺点也很明显: 强依赖数据库,无法提供高可用 ID生成强依赖单台服务,无法横向扩展 很容易想到,…
概述 本篇文章主要讲述分布式ID生成算法中最出名的Snowflake算法.搞.NET开发的,数据库主键最常见的就是int类型的自增主键和GUID类型的uniqueidentifier. 那么为何还要引入snowflake呢? INT自增主键 自增主键是解决主键生成的最简单方案,它有如下优势: 数据库本身负责主键生成,效率高 数据库本身保证主键顺序递增,方便存储和检索 相对应的,它也有如下缺点: 严重依赖数据库服务 强顺序递增,不易横向扩展 分库分表很难处理 不方便导入数据 上层应用在插入数据时,…
概述 上篇文章介绍了3种常见的Id生成算法,本篇主要介绍如何使用C#实现Snowflake. 基础字段 /// <summary> /// 工作节点Id(长度为5位) /// </summary> public long WorkId{get;protected set;} /// <summary> /// 机房Id(长度为5位) /// </summary> public long DataCenterId{get;protected set;} ///…
package com.shopping.test; /** * SnowFlake的结构如下(每部分用-分开):<br> * 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br> * 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br> * 41位时间截(毫秒级),注意,41位…
上次简单的说一下:http://www.cnblogs.com/dunitian/p/6041745.html#uid C#版本的国外朋友已经封装了,大家可以去看看:https://github.com/ccollie/snowflake-net 强大的网友出来个简化版本:http://blog.csdn.net/***/article/details/*** (地址我就不贴了,对前辈需要最起码的尊敬) 一开始我用的是这个简化版本,后来发现有重复项...(demo:https://github.…
存在的问题 时间回拨问题:由于机器的时间是动态的调整的,有可能会出现时间跑到之前几毫秒,如果这个时候获取到了这种时间,则会出现数据重复 机器id分配及回收问题:目前机器id需要每台机器不一样,这样的方式分配需要有方案进行处理,同时也要考虑,如果该机器宕机了,对应的workerId分配后的回收问题 机器id上限:机器id是固定的bit,那么也就是对应的机器个数是有上限的,在有些业务场景下,需要所有机器共享同一个业务空间,那么10bit表示的1024台机器是不够的. 参考文章:https://blo…