上例中将HDFS里小文件通过mapper压缩到一个文件中,本例将这些小文件解压出来. mapreduce可以按SequenceFile的key进行分片. 1.mapper public class MultiOutputMapper extends Mapper<Text,BytesWritable,NullWritable,Text> { private MultipleOutputs<NullWritable,Text> multipleOutputs; private lon…
不多说,直接上代码. Hadoop 自身提供了几种机制来解决相关的问题,包括HAR,SequeueFile和CombineFileInputFormat. Hadoop 自身提供的几种小文件合并机制 Hadoop HAR 将众多小文件打包成一个大文件进行存储,并且打包后原来的文件仍然可以通过Map-reduce进行操作,打包后的文件由索引和存储两大部分组成         缺点:一旦创建就不能修改,也不支持追加操作,还不支持文档压缩,当有新文件进来以后,需要重新打包.     SequeuesF…
①自定义按某列排序,二次排序 writablecomparable中的compareto方法 ②topk a利用treemap,缺点:map中的key不允许重复:https://blog.csdn.net/u010660276/article/details/50967054 b封装mapper<key,value>中的key实现writablecompareable接口,实现排序https://blog.csdn.net/lzm1340458776/article/details/43228…
linux下tar命令解压到指定的目录 :#tar zxvf /bbs.tar.zip -C /zzz/bbs //把根目录下的bbs.tar.zip解压到/zzz/bbs下,前提要保证存在/zzz/bbs这个目录 这个和cp命令有点不同,cp命令如果不存在这个目录就会自动创建这个目录!附:用tar命令打包例:将当前目录下的zzz文件打包到根目录下并命名为zzz.tar.gz#tar zcvf /zzz.tar.gz ./zzz----------------------------------…
原文地址:https://www.cnblogs.com/ballwql/p/8944025.html HDFS总体架构 在介绍文件存储方案之前,我觉得有必要先介绍下关于HDFS存储架构方面的一些知识,在对架构有初步了解后,才会明白为什么要单独针对小文件展开介绍,小文件存储和其它文件存储区别在什么地方. 这里我只是就Hadoop生态中的存储层展开介绍,对于其它部分本文暂未描述.众所周知,HDFS是目前非常流行的分布式文件存储系统,其逻辑架构如下图所示: HDFS也是典型的Master/Slave…
1.hive.merge.mapfiles,True时会合并map输出.2.hive.merge.mapredfiles,True时会合并reduce输出.3.hive.merge.size.per.task,合并操作后的单个文件大小.4.hive.merge.size.smallfiles.avgsize,当输出文件平均大小小于设定值时,启动合并操作.这一设定只有当hive.merge.mapfiles或hive.merge.mapredfiles设定为true时,才会对相应的操作有效.5.m…
Hive的后端存储是HDFS,它对大文件的处理是非常高效的,如果合理配置文件系统的块大小,NameNode可以支持很大的数据量.但是在数据仓库中,越是上层的表其汇总程度就越高,数据量也就越小.而且这些表通常会按日期进行分区,随着时间的推移,HDFS的文件数目就会逐渐增加.   小文件带来的问题   关于这个问题的阐述可以读一读Cloudera的这篇文章.简单来说,HDFS的文件元信息,包括位置.大小.分块信息等,都是保存在NameNode的内存中的.每个对象大约占用150个字节,因此一千万个文件…
磁盘: heads/sectors/cylinders,分别就是磁头/扇区/柱面,每个扇区512byte(现在新的硬盘每个扇区有4K) 文件系统: 文件系统不是一个扇区一个扇区的来读数据,太慢了,所以有了block(块)的概念,它是一个块一个块的读取的,block才是文件存取的最小单位. 文件系统中1个块是由连续的8个扇区组成. HDFS: 默认文件大小64M(或者是128M) hive小文件问题解决 问题描述 HDFS的文件元信息,包括位置.大小.分块信息等,都是保存在NameNode的内存中…
针对hive on mapreduce 1:我们可以通过一些配置项来使Hive在执行结束后对结果文件进行合并: 参数详细内容可参考官网:https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties hive.merge.mapfiles 在 map-only job后合并文件,默认true hive.merge.mapredfiles 在map-reduce job后合并文件,默认false hive.merg…
最近发现离线任务对一个增量Hive表的查询越来越慢,这引起了我的注意,我在cmd窗口手动执行count操作查询发现,速度确实很慢,才不到五千万的数据,居然需要300s,这显然是有问题的,我推测可能是有小文件. 我去hdfs目录查看了一下该目录: 发现确实有很多小文件,有480个小文件,我觉得我找到了问题所在,那么合并一下小文件吧: insert into test select * from table distribute by floor (rand()*5); 这里使用distribute…
背景: 目前工作中遇到一大批的数据,如果不压缩直接上传到ftp上就会遇到ftp空间资源不足问题,没办法只能压缩后上传,上穿完成后在linux上下载.但是linux客户端的资源只有20G左右一个压缩包解压后就要占用16G左右的空间,因此想在linux上直接解压已经太折腾了(因为我们一共需要处理的这样的压缩包包含有30个左右). 解决方案: 先把linux上下载到的zip压缩包上传到hdfs,等待所有zip压缩包都上传完成后,开始使用程序直接在读取hdfs上的压缩包文件,直接解压到hdfs上,之后把…
上一例是直接用SequenceFile的createWriter来实现,本例采用mapreduce的方式. 1.把小文件整体读入需要自定义InputFormat格式,自定义InputFormat格式需要先定义RecordReader读取方式,为了整体读入,RecordReader使用一次性读入所有字节. 1.1 继承RecordReader泛型,重写这个类. import org.apache.hadoop.conf.Configuration; import org.apache.hadoop…
背景:hdfs上的文件最好和hdfs的块大小的N倍.如果文件太小,浪费namnode的元数据存储空间以及内存,如果文件分块不合理也会影响mapreduce中map的效率. 本例中将小文件的文件名作为key,其内容作为value生成SequenceFile 1.生成文件 //将目标目录的所有文件以文件名为key,内容为value放入SequenceFile中 //第一个参数是需要打包的目录,第二个参数生成的文件路径和名称 private static void combineToSequenceF…
小文件指的是那些size比HDFS的block size(默认64M)小的多的文件.不论什么一个文件,文件夹和block,在HDFS中都会被表示为一个object存储在namenode的内存中, 每一个object占用150 bytes的内存空间. 所以,假设有10million个文件, 每一个文件相应一个block,那么就将要消耗namenode 3G的内存来保存这些block的信息. 假设规模再大一些,那么将会超出现阶段计算机硬件所能满足的极限. 控制小文件的方法有: 1.应用程序自己控制…
小文件指的是那些size比HDFS的block size(默认64M)小的多的文件.如果在HDFS中存储小文件,那么在HDFS中肯定会含有许许多多这样的小文件(不然就不会用hadoop了).而HDFS的问题在于无法很有效的处理大量小文件. 任何一个文件,目录和block,在HDFS中都会被表示为一个object存储在namenode的内存中,没一个object占用150 bytes的内存空间.所以,如果有10million个文件,没一个文件对应一个block,那么就将要消耗namenode 3G…
5.1 小文件 大数据这个概念似乎意味着处理GB级乃至更大的文件.实际上大数据可以是大量的小文件.比如说,日志文件通常增长到MB级时就会存档.这一节中将介绍在HDFS中有效地处理小文件的技术. 技术24 使用Avro存储多个小文件假定有一个项目akin在google上搜索图片,并将数以百万计的图片存储分别在HDFS中.很不幸的是,这样做恰好碰上了HDFS和MapReduce的弱项,如下: Hadoop的NameNode将所有的HDFS元数据保存在内存中以加快速度.Yahoo估计平均每个文件需要6…
1. Map输入合并小文件对应参数:set mapred.max.split.size=256000000;  #每个Map最大输入大小set mapred.min.split.size.per.node=100000000; #一个节点上split的至少的大小 set mapred.min.split.size.per.rack=100000000; #一个交换机下split的至少的大小set hive.input.format=org.apache.hadoop.hive.ql.io.Com…
************************************************************************************************************ 1. HDFS上的小文件问题 小文件是指文件大小明显小于HDFS上块(block)大小(默认64MB)的文件.如果存储小文件,必定会有大量这样的小文件,否则你也不会使用Hadoop(If you’re storing small files, then you probably h…
Origin 我们首先理解一下SequenceFile试图解决什么问题,然后看SeqFile怎么解决这些问题. In HDFS 序列文件是解决Hadoop小文件问题的一个方法: 小文件是显著小于HDFS块(128M)的文件: 在HDFS中,每个文件.目录.块都被表示成一个对象,占用150bytes: 10million文件,会占用NameNode 3gb内存: In MapReduce map task通常一次处理一个input block(使用default FileInputFormat):…
使用 使用使用 使用 HDFS 保存大量小文件的缺点:1.Hadoop NameNode 在内存中保存所有文件的“元信息”数据.据统计,每一个文件需要消耗 NameNode600 字节内存.如果需要保存大量的小文件会对NameNode 造成极大的压力.2.如果采用 Hadoop MapReduce 进行小文件的处理,那么 Mapper 的个数就会跟小文件的个数成线性相关(备注:FileInputFormat 默认只对大于 HDFS Block Size的文件进行划分).如果小文件特别多,MapR…
Hadoop基础-Map端链式编程之MapReduce统计TopN示例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.项目需求 对“temp.txt”中的数据进行分析,统计出各个年份(第15~19列)总排行前十的最高气温(第87~92列),由于博客园无法上传大文件的文本,因此我把该文本的内容放在博客园的另一个链接了(需要的戳我).,如果网页打不开的话也就可以去百度云盘里下载副本,链接:链接:https://pan.baidu.com/s/12aZFcO2XoegUGMAb…
原文链接:https://blog.csdn.net/lylcore/article/details/9136555     hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map.tasks只是一个hadoop的参考数值,最终map的个数,还取决于其他的因素.      为了方便介绍,先来看几个名词: block_size : hdfs的文件块大小,默…
hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map.tasks只是一个hadoop的参考数值,最终map的个数,还取决于其他的因素. 为了方便介绍,先来看几个名词:block_size : hdfs的文件块大小,1.x默认为64M,2.x为128M,可以通过参数dfs.block.size设置total_size : 输入文件整体的大小input_f…
hadoop中map和reduce的数量设置,有以下几种方式来设置 一.mapred-default.xml 这个文件包含主要的你的站点定制的Hadoop.尽管文件名以mapred开头,通过它可以控制用户maps和 reduces的默认的设置. 下面是一些有用变量: 名字 含义 dfs.block.size 分布式文件系统中每个数据块的大小 (bytes) io.sort.factor 合并排序时每层输入的文件数 io.sort.mb 排序输入的reduce时缓存大小 io.file.buffe…
小文件处理(自定义InputFormat) 1.需求分析 无论hdfs还是mapreduce,对于小文件都有损效率,实践中,又难免面临处理大量小文件的场景,此时,就需要有相应解决方案.将多个小文件合并成一个文件SequenceFile,SequenceFile里面存储着多个文件,存储的形式为文件路径+名称为key,文件内容为value. 2.数据准备 one.txt yongpeng weidong weinan sanfeng luozong xiaoming two.txt longlong…
1.Hadoop HAR 将众多小文件打包成一个大文件进行存储,并且打包后原来的文件仍然可以通过Map-Reduce进行操作,打包后的文件由索引和存储两大部分组成: 缺点: 一旦创建就不能修改,也不支持追加操作,还不支持文档压缩,当有新文件进来以后,需要重新打包. 2.SequeuesFile 适用于非文体格式,可作小文件容器,并可压缩: 3.CombineFileInputFormat 将多个文件合并成一个split作为输入,减少map输入与HDFS块的耦合: 4.Java代码实现,使用HDF…
阅读本文可以带着下面问题: 1.map和reduce的数量过多会导致什么情况? 2.Reduce可以通过什么设置来增加任务个数? 3.一个task的map数量由谁来决定? 4.一个task的reduce数量由谁来决定? 一般情况下,在输入源是文件的时候,一个task的map数量由splitSize来决定的,那么splitSize是由以下几个来决定的 goalSize = totalSize / mapred.map.tasks inSize = max {mapred.min.split.siz…
前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 王翔 清风Python PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取 http://note.youdao.com/noteshare?id=3054cce4add8a909e784ad934f956cef 通过委托人的述说,专门查了一下深圳最近的天气,保持在10-20度之间,带羽绒服的动作确实有些匪夷所思.因为只是怀疑不能直白的查岗,该如…
转载▼ Hadoop中在计算一个JOB需要的map数之前首先要计算分片的大小.计算分片大小的公式是: goalSize = totalSize / mapred.map.tasks minSize = max {mapred.min.split.size, minSplitSize} splitSize = max (minSize, min(goalSize, dfs.block.size)) totalSize是一个JOB的所有map总的输入大小,即Map input bytes.参数map…
1.1.1         map端连接- DistributedCache分布式缓存小数据集 当一个数据集非常小时,可以将小数据集发送到每个节点,节点缓存到内存中,这个数据集称为边数据.用map函数将小数据集中的数据按键聚合到大的数据集中,输出连接数据集,进行连接操作. (1)   分布式缓存指定缓存文件 执行命令行时,采用hadoop  jar hadoop-example.jar MapSideJoinMain  -files input/cityfile/tb_dim_city.dat…