郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract 动物会重复奖励的行为,但基于奖励的学习的生理基础仅得到了部分阐明.一方面,实验证据表明神经调节剂多巴胺携带有关奖励的信息并影响突触可塑性.另一方面,强化学习理论为基于奖励的学习提供了框架.奖励调节的脉冲时序依赖可塑性(R-STDP)的最新模型已迈出了弥合两种方法之间差距的第一步,但仍面临两个问题.首先,强化学习通常是在不适合自然情况描述的离散框架中制定的.其次,生物学合理的R-STDP模型需要精确计算奖励预测误差,但…
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor 2019-07-15 22:23:02 Paper: https://arxiv.org/pdf/1801.01290.pdf or Updated Version: https://arxiv.org/pdf/1812.05905.pdf Project: https://sites.google.c…
Awesome Reinforcement Learning A curated list of resources dedicated to reinforcement learning. We have pages for other topics: awesome-rnn, awesome-deep-vision, awesome-random-forest Maintainers: Hyunsoo Kim, Jiwon Kim We are looking for more contri…
1 前言 Deep Reinforcement Learning可以说是当前深度学习领域最前沿的研究方向,研究的目标即让机器人具备决策及运动控制能力.话说人类创造的机器灵活性还远远低于某些低等生物,比如蜜蜂..DRL就是要干这个事,而是关键是使用神经网络来进行决策控制. 因此,考虑了一下,决定推出DRL前沿系列,第一时间推送了解到的DRL前沿,主要是介绍最新的研究成果,不讲解具体方法(考虑到博主本人也没办法那么快搞懂).也因此,本文对于完全不了解这个领域,或者对这个领域感兴趣的童鞋都适合阅读.…
Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很多共同的 idea:一个 online 的 agent 碰到的观察到的数据序列是非静态的,然后就是,online的 RL 更新是强烈相关的.通过将 agent 的数据存储在一个 experience replay 单元中,数据可以从不同的时间步骤上,批处理或者随机采样.这种方法可以降低 non-st…
Deep Reinforcement Learning with Iterative Shift for Visual Tracking 2019-07-30 14:55:31 Paper: http://openaccess.thecvf.com/content_ECCV_2018/papers/Liangliang_Ren_Deep_Reinforcement_Learning_ECCV_2018_paper.pdf Code: not find yet. Paper List of Tra…
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应用DRL前,阶段性的整理下相关知识点.本文集中在DRL的model-free方法的Value-based和Policy-base方法,详细介绍下RL的基本概念和Value-based DQN,Policy-based DDPG两个主要算法,对目前state-of-art的算法(A3C)详细介绍,其他…
上一篇博文的内容整理了我们如何去近似价值函数或者是动作价值函数的方法: \[ V_{\theta}(s)\approx V^{\pi}(s) \\ Q_{\theta}(s)\approx Q^{\pi}(s, a) \] 通过机器学习的方法我们一旦近似了价值函数或者是动作价值函数就可以通过一些策略进行控制,比如 \(\epsilon\)-greedy. 那么我们简单回顾下 RL 的学习目标:通过 agent 与环境进行交互,获取累计回报最大化.既然我们最终要学习如何与环境交互的策略,那么我们可…
深度强化学习的18个关键问题 from: https://zhuanlan.zhihu.com/p/32153603 85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两天我阅读了两篇篇猛文A Brief Survey of Deep Reinforcement Learning 和 Deep Reinforcement Learning: An Overview ,作者排山倒海的引用了200多篇文献,阐述强化学习未来的方向.原文归纳出深度强化学习中的常见科学问题,…
RL的方案 两个主要对象:Agent和Environment Agent观察Environment,做出Action,这个Action会对Environment造成一定影响和改变,继而Agent会从新的环境中获得Reward.循环上述步骤. 举例: 机器人把水杯打翻了,人类说“不能这么做”,机器人获得人类的这个负向反馈,然后机器人观察到水杯打翻的状态,采取了拖地的行为,获得了人类的“谢谢”的正向反馈. Agent学习的目标就是使得期望的回报(reward)最大化. 注意:State(observ…