本篇文章我要写的是基于的腐蚀膨胀算法实现,腐蚀膨胀是形态学图像处理的基础,,腐蚀在二值图像的基础上做"收缩"或"细化"操作,膨胀在二值图像的基础上做"加长"或"变粗"的操作.那么什么是二值图像呢?把一幅图片看做成一个二维的数组,那么二值图像是一个只有0和1的逻辑数组,我们前面Sobel边缘检测后的图像输出边缘效果,设置个阈值,大于阈值输出为1,小于阈值输出为0,最后输出就是一幅二维图像了. 上一篇我是直接用MATLAB处理后的…
本篇文章要分享的是基于MATLAB的腐蚀膨胀算法实现,腐蚀膨胀是形态学图像处理的基础,腐蚀在二值图像的基础上做“收缩”或“细化”操作,膨胀在二值图像的基础上做“加长”或“变粗”的操作. 什么是二值图像呢?把一幅图片看做成一个二维的数组,那么二值图像是一个只有0和1的逻辑数组,我们前面Sobel边缘检测后的图像输出边缘效果,设置个阈值,大于阈值输出为1,小于阈值输出为0,最后输出就是一幅二维图像了. 腐蚀 腐蚀是一种消除边界点,使边界向内部收缩的过程.可以用来消除小且无意义的物体.用3X3的结构元…
1.图像膨胀的Matlab实现: 可以使用imdilate函数进行图像膨胀,imdilate函数需要两个基本输入参数,即待处理的输入图像和结构元素对象.结构元素对象可以是strel函数返回的对象,也可以是一个自己定义的表示结构元素邻域的二进制矩阵.此外,imdilate还可以接受两个可选参数:PADOPT(padopt) ——影响输出图片的大小.PACKOPT(packopt).——说明输入图像是否为打包的二值图像(二进制图像).举个实例如下: 步骤1,首先创建一个包含矩形对象的二值图像矩阵.…
转载请注明出处:http://xiahouzuoxin.github.io/notes 腐蚀与膨胀 腐蚀和膨胀是图像的形态学处理中最主要的操作,之后遇见的开操作和闭操作都是腐蚀和膨胀操作的结合运算. 腐蚀和膨胀的应用非常广泛,并且效果还非常好: 腐蚀能够切割(isolate)独立的图像元素,膨胀用于连接(join)相邻的元素,这也是腐蚀和膨胀后图像最直观的展现 去噪:通过低尺寸结构元素的腐蚀操作非常easy去掉分散的椒盐噪声点 图像轮廓提取:腐蚀操作 图像切割 等等...(在文后给出一则简单有用…
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 形态学操作简单来说,就是改变物体的形状,下面学习一下,首先本文的目录如下: 1,定义结构元素 2,腐蚀和膨胀 3,开运算和闭运算 4,礼帽/顶帽,黑帽算法 5,梯度运算 6,形态学运算 检测边和角点(1,检测边缘 : 2,检测拐角) 1,定义结构元素 形态学操作的原理:在特殊领域运算形式--结构元素(S…
腐蚀膨胀是图像形态学比较常见的处理,腐蚀一般可以用来消除噪点,分割出独立的图像元素等. 一般腐蚀操作对二值图进行处理,腐蚀操作如下图,中心位置的像素点是否与周围领域的像素点颜色一样(即是否是白色点,即值是否为255),若一致,则保留,不一致则该点变为黑色(值即为0) opencv中的腐蚀操作: CVAPI(void) cvErode( const CvArr* src, CvArr* dst, IplConvKernel* element CV_DEFAULT(NULL), ) ); 前两个参数…
原文:Win8Metro(C#)数字图像处理--2.22二值图像膨胀  [函数名称] 二值图像膨胀函数DilationProcess(WriteableBitmap src) [算法说明]  膨胀算法也是属于形态学算法的范畴,前一节已经简单介绍了形态学,这里不再累赘.  我们这里介绍的膨胀算法依旧采用上一节腐蚀中的结构元素S,则算法过程如下:  用通俗的话讲就是,用结构元素作为模板在原始二值图像种平滑一遍,扫描图像的每一个像素,用结构元素中的每一个元素与其覆盖的二值图像做"或"操作…
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python 图像处理 OpenCV (3):图像属性.图像感兴趣 ROI 区域及通道处理」 「Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间」 「Python 图像处理 OpenCV (5):图像的几何变换」 「Python 图像处理 OpenCV (6):图像的阈值处理」 「Py…
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python 图像处理 OpenCV (3):图像属性.图像感兴趣 ROI 区域及通道处理」 「Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间」 「Python 图像处理 OpenCV (5):图像的几何变换」 「Python 图像处理 OpenCV (6):图像的阈值处理」 「Py…
地理围栏算法解析 http://www.cnblogs.com/LBSer/p/4471742.html 地理围栏(Geo-fencing)是LBS的一种应用,就是用一个虚拟的栅栏围出一个虚拟地理边界,当手机进入.离开某个特定地理区域,或在该区域内活动时,手机可以接收自动通知和警告.如下图所示,假设地图上有三个商场,当用户进入某个商场的时候,手机自动收到相应商场发送的优惠券push消息.地理围栏应用非常广泛,当今移动互联网主要app如美团.大众点评.手淘等都可看到其应用身影. 图1 地理围栏示意…