make_blobs】的更多相关文章

sklearn.datasets.make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None) 属性含义: n_samples: int, optional (default=100) The total number of points equally divided among clusters. 待生…
一.make_blobs简介 scikit中的make_blobs方法常被用来生成聚类算法的测试数据,直观地说,make_blobs会根据用户指定的特征数量.中心点数量.范围等来生成几类数据,这些数据可用于测试聚类算法的效果. 二.函数原型 sklearn.datasets.make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, rand…
# 生成用于聚类的各向同性高斯blobsklearn.datasets.make_blobs(n_samples = 100,n_features = 2,center = 3,cluster_std = 1.0,center_box =( - 10.0,10.0),shuffle = True,random_state = None) 参数 n_samples: int, optional (default=100) 待生成的样本的总数. n_features: int, optional (…
sklearn.datasets.make_blobs() 是用于创建多类单标签数据集的函数,它为每个类分配一个或多个正态分布的点集. sklearn.datasets.make_blobs( n_samples=100, # 待生成的样本的总数 n_features=2, # 每个样本的特征数 centers=3, # 要生成的样本中心(类别)数,或者是确定的中心点 cluster_std=1.0, # 每个类别的标准差 center_box=(-10.0, 10.0), #中心确定之后的数据…
  版权声明:本文为博主原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/kevinelstri/article/details/52622960 [scikit-learn]01:使用案例对sklearn库进行简单介绍 [scikit-learn]02:使用sklearn库进行统计学习 [scikit-learn]03:将sklearn库用于非监督性学习 聚类 [scikit-learn]04:sklearn…
make_blobs方法: sklearn.datasets.make_blobs(n_samples=100,n_features=2,centers=3, cluster_std=1.0,center_box=(-10.0,10.0),shuffle=True,random_state=None) make_blobs函数是为聚类产生数据集,产生一个数据集和相应的标签n_samples:表示数据样本点个数,默认值100n_features:是每个样本的特征(或属性)数,也表示数据的维度,默认…
1.make_bolbs() 函数 from sklearn.datasets.samples_generator import make_blobs import numpy as np import matplotlib.pyplot as plt X , y = make_blobs(n_samples=1000 , n_features= 2 ,centers=[[-1,-1],[0,0],[1,1],[2,2]],cluster_std=[0.4,0.3,0.3,0.4],random…
在主成分分析(PCA)原理总结中,我们对主成分分析(以下简称PCA)的原理做了总结,下面我们就总结下如何使用scikit-learn工具来进行PCA降维. 1. scikit-learn PCA类介绍 在scikit-learn中,与PCA相关的类都在sklearn.decomposition包中.最常用的PCA类就是sklearn.decomposition.PCA,我们下面主要也会讲解基于这个类的使用的方法. 除了PCA类以外,最常用的PCA相关类还有KernelPCA类,在原理篇我们也讲到…
在谱聚类(spectral clustering)原理总结中,我们对谱聚类的原理做了总结.这里我们就对scikit-learn中谱聚类的使用做一个总结. 1. scikit-learn谱聚类概述 在scikit-learn的类库中,sklearn.cluster.SpectralClustering实现了基于Ncut的谱聚类,没有实现基于RatioCut的切图聚类.同时,对于相似矩阵的建立,也只是实现了基于K邻近法和全连接法的方式,没有基于$\epsilon$-邻近法的相似矩阵.最后一步的聚类方…
在DBSCAN密度聚类算法中,我们对DBSCAN聚类算法的原理做了总结,本文就对如何用scikit-learn来学习DBSCAN聚类做一个总结,重点讲述参数的意义和需要调参的参数. 1. scikit-learn中的DBSCAN类 在scikit-learn中,DBSCAN算法类为sklearn.cluster.DBSCAN.要熟练的掌握用DBSCAN类来聚类,除了对DBSCAN本身的原理有较深的理解以外,还要对最近邻的思想有一定的理解.集合这两者,就可以玩转DBSCAN了. 2. DBSCAN…
在BIRCH聚类算法原理中,我们对BIRCH聚类算法的原理做了总结,本文就对scikit-learn中BIRCH算法的使用做一个总结. 1. scikit-learn之BIRCH类 在scikit-learn中,BIRCH类实现了原理篇里讲到的基于特征树CF Tree的聚类.因此要使用BIRCH来聚类,关键是对CF Tree结构参数的处理. 在CF Tree中,几个关键的参数为内部节点的最大CF数B, 叶子节点的最大CF数L, 叶节点每个CF的最大样本半径阈值T.这三个参数定了,CF Tree的…
在K-Means聚类算法原理中,我们对K-Means的原理做了总结,本文我们就来讨论用scikit-learn来学习K-Means聚类.重点讲述如何选择合适的k值. 1. K-Means类概述 在scikit-learn中,包括两个K-Means的算法,一个是传统的K-Means算法,对应的类是KMeans.另一个是基于采样的Mini Batch K-Means算法,对应的类是MiniBatchKMeans.一般来说,使用K-Means的算法调参是比较简单的. 用KMeans类的话,一般要注意的…
机器学习课程的一个实验,整理出来共享. 原理很简单,优化方法是用的梯度下降.后面有测试结果. # coding=utf-8 from math import exp import matplotlib.pyplot as plt import numpy as np from sklearn.datasets.samples_generator import make_blobs def sigmoid(num): ''' :param num: 待计算的x :return: sigmoid之后…
生成数据集方法:sklearn.datasets.make_blobs(n_samples,n_featurs,centers)可以生成数据集,n_samples表示个数,n_features表示特征个数,centers表示y的种类数 make_blobs函数是为聚类产生数据集 产生一个数据集和相应的标签 n_samples:表示数据样本点个数,默认值100 n_features:表示数据的维度,默认值是2 centers:产生数据的中心点,默认值3 cluster_std:数据集的标准差,浮点…
scikit-learn 的 datasets 模块包含测试数据相关函数,主要包括三类: datasets.load_*():获取小规模数据集.数据包含在 datasets 里 datasets.fetch_*():获取大规模数据集.需要从网络上下载,函数的第一个参数是 data_home,表示数据集下载的目录,默认是 ~/scikit_learn_data/.要修改默认目录,可以修改环境变量SCIKIT_LEARN_DATA.数据集目录可以通过datasets.get_data_home()获…
2015-02-16 Created By BaoXinjian…
The mean shift clustering algorithm MEAN SHIFT CLUSTERING Mean shift clustering is a general non-parametric cluster finding procedure - introduced by Fukunaga and Hostetler [1], and popular within the computer vision field. Nicely, and in contrast to…
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 转载请注明出处 ======================================…
scikit-learn点滴 scikit-learn是非常漂亮的一个机器学习库,在某些时候,使用这些库能够大量的节省你的时间,至少,我们用Python,应该是很难写出速度快如斯的代码的. scikit-learn官方出了一些文档,但是个人觉得,它的文档很多东西都没有讲清楚,它说算法原理的时候,只是描述一下,除非你对这种算法已经烂熟于心,才会对它的描述会心一笑,它描述API的时候,很多时候只是讲了一些常见用法,一些比较高级的用法就语焉不详,虽然有很多人说,这玩意的文档写得不错,但是我觉得特坑.所…
作者:桂. 时间:2017-05-23  06:37:31 链接:http://www.cnblogs.com/xingshansi/p/6892317.html 前言 仍然是python库函数scikit-learn的学习笔记,内容Regression-1.2Linear and Quadratic Discriminant Analysis部分,主要包括:  1)线性分类判别(Linear discriminant analysis, LDA) 2)二次分类判别(Quadratic disc…
1.算法简介 AP(Affinity Propagation)通常被翻译为近邻传播算法或者亲和力传播算法,是在2007年的Science杂志上提出的一种新的聚类算法.AP算法的基本思想是将全部数据点都当作潜在的聚类中心(称之为exemplar),然后数据点两两之间连线构成一个网络(相似度矩阵),再通过网络中各条边的消息(responsibility和availability)传递计算出各样本的聚类中心. 2.相关概念(假如有数据点i和数据点j)        (图1)              …
考虑到学习知识的顺序及效率问题,所以后续的几种聚类方法不再详细讲解原理,也不再写python实现的源代码,只介绍下算法的基本思路,使大家对每种算法有个直观的印象,从而可以更好的理解函数中参数的意义及作用,而重点是放在如何使用及使用的场景. (题外话: 今天看到一篇博文:刚接触机器学习这一个月我都做了什么?  里面对机器学习阶段的划分很不错,就目前而言我们只要做到前两阶段即可) 因为前两篇博客已经介绍了两种算法,所以这里的算法编号从3开始. 3.Mean-shift 1)概述 Mean-shift…
1.概述      线性判别式分析(Linear Discriminant Analysis),简称为LDA.也称为Fisher线性判别(Fisher Linear Discriminant,FLD),是模式识别的经典算法,在1996年由Belhumeur引入模式识别和人工智能领域. 基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳的可分离性. LDA与PCA都是常…
看过首席科学家NG的深度学习公开课很久了,一直没有时间做课后编程题,做完想把思路总结下来,仅仅记录编程主线. 一 引用工具包 import numpy as np import matplotlib.pyplot as plt from testCases import * import sklearn import sklearn.datasets import sklearn.linear_model from planar_utils import plot_decision_bounda…
简要的说明: dbscan为一个密度聚类算法,无需指定聚类个数. python的简单实例: # coding:utf-8 from sklearn.cluster import DBSCAN import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn.datasets import make_blobs from sklearn.preprocessing import S…
注册了博客园一晃有3个月了,同时接触机器学习也断断续续的算是有1个月了.今天就用机器学习神器sklearn包的相关内容作为我的开篇文章吧. 本文将对sklearn包中的数据集做一个系统介绍,并简单说一下它们的使用. 道行尚浅,如正文描述有误还望小伙伴不吝赐教,不胜感激,即刻进入正文. 首先,一般机器学习的建模步骤是:数据收集 -> 特征工程 -> 模型选择 -> 模型训练 -> 模型评估 -> 超参数调整 -> 模型预测 -> 模型保存 由此可见,拥有大量优质的数…
转载请标明出处:https://www.cnblogs.com/tiaozistudy/p/dbscan_algorithm.html DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类算法,是一种基于高密度连通区域的.基于密度的聚类算法,能够将具有足够高密度的区域划分为簇(Cluster),并在具有噪声的数据中发现任意形状的簇.DBSCAN算法通过距离定义出一个密度函数,计算出每个样本附近的密度,从而根据每…
0.聚类 聚类就是对大量的未知标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大而类别间的数据相似度较小,聚类属于无监督的学习方法. 1.内在相似性的度量 聚类是根据数据的内在的相似性进行的,那么我们应该怎么定义数据的内在的相似性呢?比较常见的方法是根据数据的相似度或者距离来定义的,比较常见的有: 闵可夫斯基距离/欧式距离 上述距离公式中,当p=2时,就是欧式距离,当p=1时,就是绝对值的和,当p=正无穷时,这个距离变成了维度差最大的那个值. 杰卡德相似系数 一般是…
1. 聚类简介 0x1:聚类是什么? 聚类是一种运用广泛的探索性数据分析技术,人们对数据产生的第一直觉往往是通过对数据进行有意义的分组.很自然,首先要弄清楚聚类是什么? 直观上讲,聚类是将对象进行分组的一项任务,使相似的对象归为一类,不相似的对象归为不同类 但是,要达到这个目的存在几个很困难的问题 . 上述提及的两个目标在很多情况下是互相冲突的.从数学上讲,虽然聚类共享具有等价关系甚至传递关系,但是相似性(或距离)不具有传递关系.具体而言,假定有一对象序列,X1,....,Xm,所有相邻元素(X…
SVM原理 线性可分与线性不可分 线性可分 线性不可分-------[无论用哪条直线都无法将女生情绪正确分类] SVM的核函数可以帮助我们: 假设‘开心’是轻飘飘的,“不开心”是沉重的 将三维视图还原成二维: 刚利用“开心”“不开心”的重量差实现将二维数据变成三维的过程,称为将数据投射至高维空间,这正是核函数的功能 在SVM中,用的最普遍的两种把数据投射到高维空间的方法分别是多项式内核.径向基内核(RFB) 多项式内核: 通过把样本原始特征进行乘方来把数据投射到高维空间[如特征1^2,特征2^3…