Kafka实战-实时日志统计流程】的更多相关文章

1.概述 在<Kafka实战-简单示例>一文中给大家介绍来Kafka的简单示例,演示了如何编写Kafka的代码去生产数据和消费数据,今天给大家介绍如何去整合一个完整的项目,本篇博客我打算为大家介绍Flume+Kafka+Storm的实时日志统计,由于涉及的内容较多,这里先给大家梳理一个项目的运用这些技术的流程.下面是今天的内容目录: 项目流程 Flume Kafka Storm 下面开始今天的内容分享. 2.项目流程 在整合这套方案的时候,项目组也是经过一番讨论,在讨论中,观点很多,有人认为直…
1.概述 经过前面Kafka实战系列的学习,我们通过学习<Kafka实战-入门>了解Kafka的应用场景和基本原理,<Kafka实战-Kafka Cluster>一文给大家分享了Kafka集群的搭建部署,让大家掌握了集群的搭建步骤,<Kafka实战-实时日志统计流程>一文给大家讲解一个项目(或者说是系统)的整体流程,<Kafka实战-Flume到Kafka>一文给大家介绍了Kafka的数据生产过程,<Kafka实战-Kafka到Storm>一文给…
1.概述 在<Kafka实战-实时日志统计流程>一文中,谈到了Storm的相关问题,在完成实时日志统计时,我们需要用到Storm去消费Kafka Cluster中的数据,所以,这里我单独给大家分享一篇Storm Cluster的搭建部署.以下是今天的分享目录: Storm简述 基础软件 安装部署 效果预览 下面开始今天的内容分享. 2.Storm简述 Twitter将Storm开源了,这是一个分布式的.容错的实时计算系统,已被贡献到Apache基金会,下载地址如下所示: http://stor…
每个公司想要进行数据分析或数据挖掘,收集日志.ETL都是第一步的,今天就讲一下如何实时地(准实时,每分钟分析一次)收集日志,处理日志,把处理后的记录存入Hive中,并附上完整实战代码 1. 整体架构 思考一下,正常情况下我们会如何收集并分析日志呢? 首先,业务日志会通过Nginx(或者其他方式,我们是使用Nginx写入日志)每分钟写入到磁盘中,现在我们想要使用Spark分析日志,就需要先将磁盘中的文件上传到HDFS上,然后Spark处理,最后存入Hive表中,如图所示: 我们之前就是使用这种方式…
package com.doctor.logbackextend; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Properties; import kafka.consumer.Consumer; import kafka.consumer.ConsumerConfig; import kafka.consumer.ConsumerIterator; import…
胡夕 <Apache Kafka实战>作者,北航计算机硕士毕业,现任某互金公司计算平台总监,曾就职于IBM.搜狗.微博等公司.国内活跃的Kafka代码贡献者. 前言 虽然目前Apache Kafka已经全面进化成一个流处理平台,但大多数的用户依然使用的是其核心功能:消息队列.对于如何有效地监控和调优Kafka是一个大话题,很多用户都有这样的困扰,今天我们就来讨论一下. 一.Kafka综述 在讨论具体的监控与调优之前,我想用一张PPT图来简单说明一下当前Kafka生态系统的各个组件.就像我前面所…
<Apache Kafka 实战>读书笔记-认识Apache Kafka 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.kafka概要设计 kafka在设计初衷就是为了解决互联网公司的超级大量级数据的实时传输.为了实现这个目标,kafka在设计之初就需要考虑以下四个方面: 第一:吞吐量/延迟 第二:消息持久化  第三:负载均衡和故障转移 第四:伸缩性 1>.吞吐量/延时介绍 我们先打个比方:若kafka处理一条消息需要花费2ms,那么计算得到的吞吐量不会超过500…
1.概述 在<Kafka实战-Flume到Kafka>一文中给大家分享了Kafka的数据源生产,今天为大家介绍如何去实时消费Kafka中的数据.这里使用实时计算的模型——Storm.下面是今天分享的主要内容,如下所示: 数据消费 Storm计算 预览截图 接下来,我们开始分享今天的内容. 2.数据消费 Kafka的数据消费,是由Storm去消费,通过KafkaSpout将数据输送到Storm,然后让Storm安装业务需求对接受的数据做实时处理,下面给大家介绍数据消费的流程图,如下图所示: 从图…
1.概述 前面给大家介绍了整个Kafka项目的开发流程,今天给大家分享Kafka如何获取数据源,即Kafka生产数据.下面是今天要分享的目录: 数据来源 Flume到Kafka 数据源加载 预览 下面开始今天的分享内容. 2.数据来源 Kafka生产的数据,是由Flume的Sink提供的,这里我们需要用到Flume集群,通过Flume集群将Agent的日志收集分发到 Kafka(供实时计算处理)和HDFS(离线计算处理).关于Flume集群的Agent部署,这里就不多做赘述了,不清楚的同学可以参…
Kafka实战-Flume到Kafka Kafka   2015-07-03 08:46:24 发布 您的评价:       0.0   收藏     2收藏 1.概述 前面给大家介绍了整个Kafka项目的开发流程,今天给大家分享Kafka如何获取数据源,即Kafka生产数据.下面是今天要分享的目录: 数据来源 Flume到Kafka 数据源加载 预览 下面开始今天的分享内容. 2.数据来源 Kafka生产的数据,是由Flume的Sink提供的,这里我们需要用到Flume集群,通过Flume集群…
<Apache Kafka实战>读书笔记-调优Kafka集群 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.确定调优目标 1>.常见的非功能性要求 一.性能(performance) 最重要的非功能性需求之一.大多数生产环境对集群性能都有着严格的要求.不同的系统对于性能有着不同的诉求.比如对数据库系统来说,最重要的性能是请求的响应时间(response time).用户总是希望一条查询或更新操作的整体响应时间越短越好:而对kafak而言,性能一般指的是吞吐量和延时…
https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 2018-03-07 前言 目前业界基于 Hadoop 技术栈的底层计算平台越发稳定成熟,计算能力不再成为主要瓶颈. 多样化的数据.复杂的业务分析需求.系统稳定性.数据可靠性, 这些软性要求, 逐渐成为日志分析系统面对的主要问题.2018 年线上线下融合已成大势,苏宁易购提出并践行双线融合模式,提出了智…
原文链接:Kafka实战-Flume到Kafka 1.概述 前面给大家介绍了整个Kafka项目的开发流程,今天给大家分享Kafka如何获取数据源,即Kafka生产数据.下面是今天要分享的目录: 数据来源 Flume到Kafka 数据源加载 预览 下面开始今天的分享内容. 2.数据来源 Kafka生产的数据,是由Flume的Sink提供的,这里我们需要用到Flume集群,通过Flume集群将Agent的日志收集分发到 Kafka(供实时计算处理)和HDFS(离线计算处理).关于Flume集群的Ag…
ELK搭建实时日志分析平台 导言 ELK由ElasticSearch.Logstash和Kiabana三个开源工具组成,ELK平台可以同时实现日志收集.日志搜索和日志分析的功能.对于生产环境中海量日志信息的分析处理无疑不是一个好的解决方案. 官方网站:https://www.elastic.co/ 1).Elasticsearch是个开源分布式搜索引擎,它的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制,restful风格接口,多数据源,自动搜索负载等. 2).Logstash是一…
1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引擎如何选择?Flink or Spark? 2.为何需要实时计算? 根据IBM的统计报告显示,过去两年内,当今世界上90%的数据产生源于新设备.传感器以及技术的出现,数据增长率也会为此加速.而从技术上将,这意味着大数据领域,处理这些数据将变得更加复杂和具有挑战性.例如移动应用广告.欺诈检测.出租车预…
kafka实战教程(python操作kafka),kafka配置文件详解 应用往Kafka写数据的原因有很多:用户行为分析.日志存储.异步通信等.多样化的使用场景带来了多样化的需求:消息是否能丢失?是否容忍重复?消息的吞吐量?消息的延迟? kafka介绍 Kafka属于Apache组织,是一个高性能跨语言分布式发布订阅消息队列系统[7].它的主要特点有: 以时间复杂度O(1)的方式提供消息持久化能力,并对大数据量能保证常数时间的访问性能: 高吞吐率,单台服务器可以达到每秒几十万的吞吐速率: 支持…
ELK+Kafka集群分析系统部署 因为是自己本地写好的word文档复制进来的.格式有些出入还望体谅.如有错误请回复.谢谢! 一. 系统介绍 2 二. 版本说明 3 三. 服务部署 3 1) JDK部署 3 2) Elasticsearch集群部署及优化 3 3) Elasticsearch健康插件安装 13 4) Shield之elasticsearch安全插件 15 5)Zookeeper集群搭建 15 6)Kafka集群搭建 17 7)测试Kafka和Zookeeper集群连通性 19 8…
[转自]https://my.oschina.net/itblog/blog/547250 摘要: 前段时间研究的Log4j+Kafka中,有人建议把Kafka收集到的日志存放于ES(ElasticSearch,一款基于Apache Lucene的开源分布式搜索引擎)中便于查找和分析,在研究此方案可行性的时候,我发现ELK(ElasticSearch, Logstash, Kibana)平台恰好可以同时实现日志收集.日志搜索和日志分析的功能,于是又去学习了一番.之后发现如果使用这三者,收集日志也…
hadoop一般用在离线的分析计算中,而storm区别于hadoop,用在实时的流式计算中,被广泛用来进行实时日志处理.实时统计.实时风控等场景,当然也可以用在对数据进行实时初步的加工,存储到分布式数据库中如HBase,便于后续的查询. 面对的大批量的数据的实时计算,storm实现了一个可扩展的.低延迟.可靠性和容错的分布式计算平台. 1.对象介绍 tuple:表示流中一个基本的处理单元,可以包括多个field,每个filed表示一个属性 topology:一个拓扑是一个个计算节点组成的图,每个…
1. Kafka概要设计 kafka在设计之初就需要考虑以下4个方面的问题: 吞吐量/延时 消息持久化 负载均衡和故障转移 伸缩性 1.1 吞吐量/延时 对于任何一个消息引擎而言,吞吐量都是至关重要的性能指标.那么何为吞吐量呢?通常来说,吞吐量是某种处理能力的最大值.而对于Kafka而言,它的吞吐量就是每秒能够处理的消息数或者每秒能够处理的字节数.很显然,我们自然希望消息引擎的吞吐量越大越好. 消息引擎系统还有一个名为延时的性能指标.它衡量的是一段时间间隔,可能是发出某个操作与接收到操作响应(r…
<Apache kafka实战>读书笔记-kafka集群监控工具 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 如官网所述,Kafka使用基于yammer metrics的监控指标体系来统计broker端和clinets端的各种监控指标(metric).说到yammer metrics,其官网过出了这样的一句话: yammer metrics是一个java库,它使得你能够对生产环境代码所做之事具有无与伦比的洞察力. 当然,虽然该项目已经进化到3.x版本,但即使最新版本的ka…
在日常运维工作中,对于系统和业务日志的处理尤为重要.今天,在这里分享一下自己部署的ELK(+Redis)-开源实时日志分析平台的记录过程(仅依据本人的实际操作为例说明,如有误述,敬请指出)~ ================概念介绍================日志主要包括系统日志.应用程序日志和安全日志.系统运维和开发人员可以通过日志了解服务器软硬件信息.检查配置过程中的错误及错误发生的原因.经常分析日志可以了解服务器的负荷,性能安全性,从而及时采取措施纠正错误. 通常,日志被分散在储存不同…
摘要: 前段时间研究的Log4j+Kafka中,有人建议把Kafka收集到的日志存放于ES(ElasticSearch,一款基于Apache Lucene的开源分布式搜索引擎)中便于查找和分析,在研究此方案可行性的时候,我发现ELK(ElasticSearch, Logstash, Kibana)平台恰好可以同时实现日志收集.日志搜索和日志分析的功能,于是又去学习了一番.之后发现如果使用这三者,收集日志也可以不再使用Kafka了,Logstash就可以帮我们完成.当然,虽然Logstash也支持…
在日常运维工作中,对于系统和业务日志的处理尤为重要.今天,在这里分享一下自己部署的ELK(+Redis)-开源实时日志分析平台的记录过程(仅依据本人的实际操作为例说明,如有误述,敬请指出)~ ================概念介绍================日志主要包括系统日志.应用程序日志和安全日志.系统运维和开发人员可以通过日志了解服务器软硬件信息.检查配置过程中的错误及错误发生的原因.经常分析日志可以了解服务器的负荷,性能安全性,从而及时采取措施纠正错误. 通常,日志被分散在储存不同…
一.概述 ELK 已经成为目前最流行的集中式日志解决方案,它主要是由Beats.Logstash.Elasticsearch.Kibana等组件组成,来共同完成实时日志的收集,存储,展示等一站式的解决方案.本文将会介绍ELK常见的架构以及相关问题解决. 1. Filebeat:Filebeat是一款轻量级,占用服务资源非常少的数据收集引擎,它是ELK家族的新成员,可以代替Logstash作为在应用服务器端的日志收集引擎,支持将收集到的数据输出到Kafka,Redis等队列. 2. Logstas…
原文:http://blog.csdn.net/mchdba/article/details/52132663 1.ELK平台介绍 在搜索ELK资料的时候,发现这篇文章比较好,于是摘抄一小段:以下内容来自: http://baidu.blog.51cto.com/71938/1676798 日志主要包括系统日志.应用程序日志和安全日志.系统运维和开发人员可以通过日志了解服务器软硬件信息.检查配置过程中的错误及错误发生的原因.经常分析日志可以了解服务器的负荷,性能安全性,从而及时采取措施纠正错误.…
本次遇到的问题描述,日志采集同步时,当单条日志(日志文件中一行日志)超过2M大小,数据无法采集同步到kafka,分析后,共踩到如下几个坑.1.flume采集时,通过shell+EXEC(tail -F xxx.log 的方式) source来获取日志时,当单条日志过大超过1M时,source端无法从日志中获取到Event.2.日志超过1M后,flume的kafka sink 作为生产者发送给日志给kafka失败,kafka无法收到消息.以下针对踩的这两个坑做分析,flume 我使用的是1.9.0…
1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引擎如何选择?Flink or Spark? 2.为何需要实时计算? 根据IBM的统计报告显示,过去两年内,当今世界上90%的数据产生源于新设备.传感器以及技术的出现,数据增长率也会为此加速.而从技术上将,这意味着大数据领域,处理这些数据将变得更加复杂和具有挑战性.例如移动应用广告.欺诈检测.出租车预…
1.背景 日志系统接入的日志种类多.格式复杂多样,主流的有以下几种日志: filebeat采集到的文本日志,格式多样 winbeat采集到的操作系统日志 设备上报到logstash的syslog日志 接入到kafka的业务日志 以上通过各种渠道接入的日志,存在2个主要的问题: 格式不统一.不规范.标准化不够 如何从各类日志中提取出用户关心的指标,挖掘更多的业务价值 为了解决上面2个问题,我们基于flink和drools规则引擎做了实时的日志处理服务. 2.系统架构 架构比较简单,架构图如下: 各…
作者:吴云涛,腾讯 CSIG 高级工程师导语 | 最近梳理了一下如何用 Flink 来实现实时的 UV.PV 指标的统计,并和公司内微视部门的同事交流.然后针对该场景做了简化,并发现使用 Flink SQL 来 实现这些指标的统计会更加便捷. 一 解决方案描述 1.1 概述 本方案结合本地自建 Kafka 集群.腾讯云流计算 Oceanus(Flink).云数据库 Redis 对博客.购物等网站 UV.PV 指标进行实时可视化分析.分析指标包含网站的独立访客数量(UV ).产品的点击量(PV).…