首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
常用损失函数 LossFunction
】的更多相关文章
【深度学习】一文读懂机器学习常用损失函数(Loss Function)
最近太忙已经好久没有写博客了,今天整理分享一篇关于损失函数的文章吧,以前对损失函数的理解不够深入,没有真正理解每个损失函数的特点以及应用范围,如果文中有任何错误,请各位朋友指教,谢谢~ 损失函数(loss function)是用来估量模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好.损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分.模型的结构风险函数包括了经验风险项和正则项,通常可以表示成如下式子…
pytorch常用损失函数
损失函数的基本用法: criterion = LossCriterion() #构造函数有自己的参数 loss = criterion(x, y) #调用标准时也有参数 得到的loss结果已经对mini-batch数量取了平均值 1.BCELoss(二分类) CLASS torch.nn.BCELoss(weight=None, size_average=None, reduce=None, reduction='mean') 创建一个衡量目标和输出之间二进制交叉熵的criterion unre…
损失函数 hinge loss vs softmax loss
1. 损失函数 损失函数(Loss function)是用来估量你模型的预测值 f(x) 与真实值 Y 的不一致程度,它是一个非负实值函数,通常用 L(Y,f(x)) 来表示. 损失函数越小,模型的鲁棒性就越好. 损失函数是经验风险函数的核心部分,也是结构风险函数的重要组成部分.模型的风险结构包括了风险项和正则项,通常如下所示: 其中,前面的均值函数表示的是经验风险函数,L代表的是损失函数,后面的 Φ 是正则化项(regularizer)或者叫惩罚项(penalty term), 它可以是L1,…
[AI]神经网络章3 损失函数
损失函数 作用 在有监督的学习中,需要衡量神经网络输出和所预期的输出之间的差异大小.这种误差函数需要能够反映出当前网络输出和实际结果之间一种量化之后的不一致程度,也就是说函数值越大,反映出模型预测的结果越不准确. 还是拿练枪的Bob做例子,Bob预期的目标是全部命中靶子的中心,但他现在的命中情况是这个样子的: 最外圈是1分,之后越向靶子中心分数是2,3,4分,正中靶心可以得5分. 那Bob每次射击结果和目标之间的差距是多少呢?在这个例子里面,用得分来衡量的话,就是说Bob得到的反馈结果从差4分,…
机器学习中的损失函数 (着重比较:hinge loss vs softmax loss)
https://blog.csdn.net/u010976453/article/details/78488279 1. 损失函数 损失函数(Loss function)是用来估量你模型的预测值 f(x)f(x) 与真实值 YY 的不一致程度,它是一个非负实值函数,通常用 L(Y,f(x))L(Y,f(x)) 来表示.损失函数越小,模型的鲁棒性就越好.损失函数是经验风险函数的核心部分,也是结构风险函数的重要组成部分.模型的风险结构包括了风险项和正则项,通常如下所示: θ∗=argminθ1N…
对于分类问题的神经网络最后一层的函数:sigmoid、softmax与损失函数
对于分类问题的神经网络最后一层的函数做如下知识点总结: sigmoid和softmax一般用作神经网络的最后一层做分类函数(备注:sigmoid也用作中间层做激活函数): 对于类别数量大于2的分类问题,如果每个类别之间互斥,则选用softmax函数(例如:类别为牡丹花.玫瑰花.菊花),如果每个类别之间有交叉则选用与类别数量相等的sigmoid函数(例如:类别为小孩.大人.男人.女人,此处应该选用4个sigmoid函数): 神经网络最后一层的分类函数直接面临作损失函数的选择: softmax函数的…
[ch03-00] 损失函数
系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 第3章 损失函数 3.0 损失函数概论 3.0.1 概念 在各种材料中经常看到的中英文词汇有:误差,偏差,Error,Cost,Loss,损失,代价......意思都差不多,在本书中,使用"损失函数"和"Loss Function"这两个词汇,具体的损失函数符号用J来表示,误差值用loss表示. "损失"…
[PyTorch 学习笔记] 4.2 损失函数
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/loss_function_1.py https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/loss_function_1.py 这篇文章主要介绍了损失函数的概念,以及 PyTorch 中提供的常用损失函数. 损失函数 损失函数是衡量模型输出与真实标签之间的差异.我们还经常…
Tensorflow 2.0 深度学习实战 —— 详细介绍损失函数、优化器、激活函数、多层感知机的实现原理
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只是机器学习的一分支领域,它更强调从连续的层中进行学习,这种层级结构中的每一层代表不同程序的抽象,层级越高,抽象程度越大.这些层主要通过神经网络的模型学习得到的,最大的模型会有上百层之多.而最简单的神经网络分为输入层,中间层(中间层往往会包含多个隐藏层),输出层.下面几篇文章将分别从前馈神经网络 FNN.卷积神…
深度学习常见的优化方法(Optimizer)总结:Adam,SGD,Momentum,AdaGard等
机器学习的常见优化方法在最近的学习中经常遇到,但是还是不够精通.将自己的学习记录下来,以备不时之需 基础知识: 机器学习几乎所有的算法都要利用损失函数 lossfunction 来检验算法模型的优劣,同时利用损失函数来提升算法模型. 这个提升的过程就叫做优化(Optimizer) 下面这个内容主要就是介绍可以用来优化损失函数的常用方法 常用的优化方法(Optimizer): 1.SGD&BGD&Mini-BGD: SGD(stochastic gradient descent):随机梯度下…