应用统计学 数据的概括性度量 集中趋势 Mode众数是唯一描述无序类别数据,由图可知众数便是图形中的峰. 对于类别变量,众数就是某一种类别. 中位数和平均数都可能不是样本中的值. 中位数不受极值影响,对于类别数据来说,中位数是某一类别(同mode),各变量值与中位数的离差绝对值之和最小,与均数不同. 平均数的求法,令函数等于各变量值与平均数的离差平方之和,该函数表达如下式. 对该函数求一阶导,如下式, 当一阶导为零时该函数取到最小值,此时样本均值表达式为: 各变量值与平均数的离差平方之和最小,各…
比率是什么? 比率(ratio) :不同类别数值的比值 在中文里,比率这个词被用来代表两个数量的比值,这包括了两个相似却在用法上有所区分的概念:一个是比的值:另一是变化率,是一个数量相对于另一数量的变化量,例如,速率是物体的移动距离相对于时间的变化量,以每单位时间的移动距离来表示:心跳率是每分钟的心跳次数:税率则是每单位收入所应缴的税金. 为什么顺序数据不适用帕雷托图? 因为这样会打破顺序 雷达图.轮廓图如何反映多组数据多个变量的或某一特征值? 当多个变量的取值相差较大或量纲不同时,可进行变换处…
一.方差公式 $S^2 = \frac{1}{N}\sum_{i=1}^{N}(X_i - \mu)^2 = \frac{1}{N}[(X_1-\mu)^2 + (X_2-\mu)^2 + ... + (X_N - \mu)^2]$ 其中公式中μ为平均数,N为这组数据的个数,x1.x2.x3--xN为这组数据具体数值. 二.标准差公式 $S = \sqrt{S^2} = \sqrt{\frac{1}{N}\sum_{i=1}^{N}(X_i - \mu)^2}$ 其中公式中数值X1,X2,X3,…
//文件 /* =============================================================== 题目:从文本文件"high.txt"中取出运动员的身高数据,并计算平均值,方差和标准差. =============================================================== */ #include<stdio.h> #include <math.h> #define hh pr…
描述统计学 当我们面对大量信息的时候,经常会出现数据越多,事实越模糊的情况,因此我们需要对数据进行简化,描述统计学就是用几个关键的数字来描述数据集的整体情况. 1.集中趋势 1.1 众数 众数是样本观测值在频数分布表中频数最多的那一组的组中值 当众数不止一个时,可以用众数指定具有最高频数的数值组,被称为众数组. 求众数三步法: ① 把数据中的不同类别或数值全部找出来 ② 写出每个数值或类别的频数 ③ 挑出具有最高频数的一个或几个数值,得出众数. 用众数代表一组数据,可靠性较差,不过,众数不受极端…
数据的分布特征: 分布的集中趋势,反应各数据向其中心值靠拢或聚集的程度(平均数,中位数,四分位数,众数) 分布的离散程度,反应各数据远离其中心值的趋势(极差,四分位差,方差,标准差,离散系数) 分布的形状,反应数据分布的偏斜程度和峰度(偏态系数,峰度系数) ####################### 平均数(均值):一组数据相加后除以数据的个数而得到结果,称为平均数(mean) 中位数:一组数据排序后处于中间位置上的变量值,称为中位数(median) 四分位数:一组数据排序后处于25%(下四…
描述性统计Python实现 这周学习时间也就几个小时,由于python也正在学习,Anaconda也有,所以那些安装啥的就偷懒下不写了,直接贴出python代码 数据是随机生成,计算是调用库里的函数. 经过第一周的学习,对描述性统计有了比较深的理解,不过部分公式却是没太弄明白,希望自己继续努力. 其实,这周因为一些琐事差点放弃继续做作业,还好坚持了,希望自己不要放弃,坚持到底,加油! 其中的理论知识可以到https://www.cnblogs.com/-feng/p/11220643.html去…
重视Code Review 极致--目标是成为优秀的开发者 Data tells a story!(数据会讲故事) 分析过程对于建模非常的重要,可以帮助我们减少实际上不相关的特征被错误的加入到模型中,尽管在一些模型里,比如线性回归,在建模后期可以通过一定的方法将这些不相关的特征识别出来,但既然能够通过前期的数据观察排除,何不在一开始就做好呢,有句话在建模领域非常有名:garbage in, garbage out 数据的中心:众数.平均数和中位数 要点:模型构建&验证比较模型 一.Why? 为什…
◆描述性统计分析 概念:描述性统计分析方法是指应用分类.制表.图形及概括性数据指标(去均值,方差等)来概括数据分布特征的方法. 而推断性统计分析方法则是通过随机抽样,应用统计方法把从样本数据得到的结论推广到总体的数据分析方法统计上需要把样本数据所御寒信息进行概括,融合和抽象, 从而得到反映样本数据的综合指标.这些指标称为统计量.描述数据特征的统计量可分为两类:一类表示数据的中心位置, 如均值,中位数,众数等,另一类表示数据的离散程度,如方差,标准差,极差等用来衡量个体偏离中心的程度在描述定性观测…
计算各种描述性统计量函数脚本(myDescriptStat.R)如下: myDescriptStat <- function(x){ n <- length(x) #样本数据个数 m <- mean(x) #均值 me <- median(x) #中位数 mo <- names(table(x))[which.max(table(x))] #众数 sd <- sd(x) #标准差 v <- var(x) #方差 r <- max(x) - min(x) #极…
本文对应<R语言实战>第6章:基本图形:第7章:基本统计分析 ================================================================================================================================================== 本章讨论的图形,主要用于分析数据前,对数据的初步掌握.想要对数据有一个初步的印象,最好的方式就是观察它,也就是将数据可视化.在这个过程中,我们…
 一. QQ图      分位数图示法(Quantile Quantile Plot,简称 Q-Q 图)       统计学里Q-Q图(Q代表分位数)是一个概率图,用图形的方式比较两个概率分布,把他们的两个分位数放在一起比较.首先选好分位数间隔.图上的点(x,y)反映出其中一个第二个分布(y坐标)的分位数和与之对应的第一分布(x坐标)的相同分位数.因此,这条线是一条以分位数间隔为参数的曲线.如果两个分布相似,则该Q-Q图趋近于落在y=x线上.如果两分布线性相关,则点在Q-Q图上趋近于落在一条直线…
在获取数据,并且完成数据的清洗之后,首要的事就是对整个数据集进行探索性的研究,这个过程中会利用到各种描述性统计量和推断性统计量来初探变量间和变量内部的基本关系,本篇笔者便基于R,对一些常用的数据探索方法进行总结: 1.描述性统计量部分 1.1 计算描述性统计量的常规方法 summary() summary()函数提供了最小值.最大值.四分位数和数值型变量的均值,以及因子向量和逻辑型向量的频数统计: > #挂载鸢尾花数据 > data(iris) > #计算鸢尾花各变量的基本描述统计量 &…
1.1 方法简介 描述性统计包含多种基本描述统计量,让用户对于数据结构可以有一个初步的认识.在此所提供之统计量包含: 基本信息:样本数.总和 集中趋势:均值.中位数.众数 离散趋势:方差(标准差).变异系数.全距(最小值.最大值).内四分位距(25%分位数.75%分位数) 分布描述:峰度系数.偏度系数 用户可选择多个变量同时进行计算,亦可选择分组变量进行多组别的统计量计算. 1.2 详细介绍 1.2.1 样本数和总和 1. R语言涉及的方法:length(x) 1.2.2 均值(Mean) 1.…
 一. QQ图      分位数图示法(Quantile Quantile Plot,简称 Q-Q 图)       统计学里Q-Q图(Q代表分位数)是一个概率图,用图形的方式比较两个概率分布,把他们的两个分位数放在一起比较.首先选好分位数间隔.图上的点(x,y)反映出其中一个第二个分布(y坐标)的分位数和与之对应的第一分布(x坐标)的相同分位数.因此,这条线是一条以分位数间隔为参数的曲线.如果两个分布相似,则该Q-Q图趋近于落在y=x线上.如果两分布线性相关,则点在Q-Q图上趋近于落在一条直线…
MATLAB数据分析工具箱 MATLAB工具箱主要含有的类别有: 数学类.统计与优化类.信号处理与通信类.控制系统设计与分析类.图像处理类.测试与测量类.计算金融类.计算生物类.并行计算类.数据库访问与报告类. MATLAB 代码生成类. MATLAB 应用发布类. 每个类别内含有一个或多个工具箱. 比如数学.统计与优化类别就包含有曲线拟合工具箱.优化工具箱.神经网络工具箱.统计工具箱等. MATLAB 应用发布类别主要包含MATLAB和其他语言的混合编译.编程,包括C.C#.Java等. MA…
         本文是课程训练的报告,部分图片由于格式原因并没有贴出,有兴趣者阅读完整报告者输入以下链接 http://files.cnblogs.com/files/liugl7/基于SPSS的老年奥运会运动员数据分析.pdf 关于本文的第三部分中聚类分析的部分是不恰当的,然而为了课程报告的完整性,这里做了折衷.对于Split1~Split10的处理在问题讨论一节中的第一个问题中给出了一种处理方式. ----------------------------------------------…
概率基础和R语言 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器.随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长.现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言. 要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域.让我们一起…
R语言数据分析系列六 -- by comaple.zhang 上一节讲了R语言作图,本节来讲讲当你拿到一个数据集的时候怎样下手分析,数据分析的第一步.探索性数据分析. 统计量,即统计学里面关注的数据集的几个指标.经常使用的例如以下:最小值,最大值,四分位数,均值,中位数,众数,方差,标准差.极差,偏度,峰度 先来解释一下各个量得含义,浅显就不说了,这里主要说一下不常见的 众数:出现次数最多的 方差:每一个样本值与均值的差得平方和的平均数 标准差:又称均方差,是方差的二次方根.用来衡量一个数据集的…
1.R语言重要数据集分析研究需要整理分析阐明理念? 上一节讲了R语言作图,本节来讲讲当你拿到一个数据集的时候如何下手分析,数据分析的第一步,探索性数据分析. 统计量,即统计学里面关注的数据集的几个指标,常用的如下:最小值,最大值,四分位数,均值,中位数,众数,方差,标准差,极差,偏度,峰度 先来解释一下各个量得含义,浅显就不说了,这里主要说一下不常见的 众数:出现次数最多的 方差:每个样本值与均值的差得平方和的平均数 标准差:又称均方差,是方差的二次方根,用来衡量一个数据集的集中性 极差:最大值…
更多来自:   www.vipcoursea.com   Ethics 部分 Objective of codes and standard:永远是为了maintain public trust in 1.Financial market  2.Investment profession 6个code of ethics 1.Code 1—ethics and pertinent d persons a. 2.Code 2---primacy of client’s interest a.Int…
笔记: 一.检验: 1.平稳性检验: 图检验方法:     时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列     自相关图检验:(acf函数)平稳序列具有短期相关性,即随着延迟期数k的增加,平稳序列的自相关系数ρ会很快地衰减向0(指数级衰减),反之非平稳序列衰减速度会比较慢   构造检验统计量进行假设检验:单位根检验adfTest()--fUnitRoots包 2.纯随机性检验.白噪声检验(Box.test(data,type,lag=n)--lag表示输出滞后n阶的白噪声检验统计量…
7.1描述性统计分析 > vars<-c("mpg","hp","wt") > head(mtcars[vars])                    mpg  hp    wt Mazda RX4         21.0 110 2.620 Mazda RX4 Wag     21.0 110 2.875 Datsun 710        22.8  93 2.320 Hornet 4 Drive    21.4 11…
<时间序列分析——基于R>王燕,读书笔记 笔记: 一.检验: 1.平稳性检验: 图检验方法:     时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列     自相关图检验:(acf函数)平稳序列具有短期相关性,即随着延迟期数k的增加,平稳序列的自相关系数ρ会很快地衰减向0(指数级衰减),反之非平稳序列衰减速度会比较慢   构造检验统计量进行假设检验:单位根检验adfTest()——fUnitRoots包 2.纯随机性检验.白噪声检验(Box.test(data,type,lag=n)…
在数据分析中,Python的主要探索函数 Python中主要用于书探索的是pandas(数据分析)和matplotlib(数据可视化).其中pandas提供了大量的数据探索的工具与数据相关的函数,这些数据探索可大致分为统计特征函数与统计作图函数,而作图函数依赖于mayplotlib,所以往往又会跟matplotlib结合在一起使用 基本统计特征的函数:统计特征用于计算数据的均值,方差,标准差,分位数,相关系数和协方差等,这些统计特征能反映出数据的整体分布 方法名 函数功能 所属库 corr()…
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学…
描述性统计是数学统计分析里的一种方法,通过这种统计方法,能分析出数据整体状况以及数据间的关联.在这部分里,将用股票数据为样本,以matplotlib类为可视化工具,讲述描述性统计里常用指标的计算方法和含义. 1 平均数.中位数和百分位数 平均数比较好理解,是样本的和除以样本的个数. 中位数也叫中值,假设样本个数是奇数,那么数据按顺序排列后处于居中位置的数则是中位数,如果样本个数是偶数,那么排序后,中间两个数据的均值则是中位数.通俗地讲,在样本数据里,有一半的样本比中位数大,有一半比它小. 把中位…
作者:vivo互联网用户运营开发团队 -  Shuai Guangying 本篇文章介绍了统计计数的基本原理以及Presto的实现思路,精确统计和近似统计的细节及各种优缺点,并给出了统计计数在具体业务使用的建议. 系列文章: 探究Presto SQL引擎(1)-巧用Antlr 探究Presto SQL引擎(2)-浅析Join 探究Presto SQL引擎(3)-代码生成 一.背景 学习Hadoop时接触的第一个样例就是word count,即统计文本中词的数量.各种BI.营销产品中不可或缺的模块…
来源:丁香园论坛:SPSS上的把非正态分布数据转换为正态分布数据 一楼 可以应用变量变换的方法,将不服从正态分布的资料转化为非正态分布或近似正态分布.常用的变量变换方法有对数变换.平方根变换.倒数变换.平方根反正玄变换等,应根据资料性质选择适当的变量变换方法. 对数变换 即将原始数据X的对数值作为新的分布数据: X'=lgX 当原始数据中有小值及零时,亦可取X'=lg(X+1) 还可根据需要选用X'=lg(X+k)或X'=lg(k-X) 对数变换常用于(1)使服从对数正态分布的数据正态化.如环境…
1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果.倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少.很罕有的情况下才出现:那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒…