前一篇,我们将SVM与logistic regression联系起来,这一次我们将SVM与ridge regression(之前的linear regression)联系起来. (一)kernel ridge regression 之前我们之前在做的是linear regression,现在我们希望在regression中使用kernel trick. 下面是linear versus kernel: 至此,kernel ridge regression结束.但是,这里的β与kernel log…
Roadmap Kernel Ridge Regression Support Vector Regression Primal Support Vector Regression Dual Summary of Kernel Models Map of Linear Models Map of Kernel Models possible kernels: polynomial, Gaussian, : : :, your design (with Mercer's condition), c…
来计算其损失. 而支持向量回归则认为只要f(x)与y偏离程度不要太大,既可以认为预测正确,不用计算损失,具体的,就是设置阈值α,只计算|f(x)−y|>α的数据点的loss,如下图所示,阴影部分的数据点我们都认为该模型预测准确了,只计算阴影外的数据点的loss: 数据处理 preprocessing.scale()作用: scale()是用来对原始样本进行缩放的,范围可以自己定,一般是[0,1]或[-1,1]. 缩放的目的主要是 1)防止某个特征过大或过小,从而在训练中起的作用不平衡: 2)为了…
Roadmap Kernel Ridge Regression Support Vector Regression Primal Support Vector Regression Dual Summary of Kernel Models Map of Linear Models Map of Kernel Models possible kernels: polynomial, Gaussian,..., your design (with Mercer’s condition), coup…
SVM算法 既可用于回归问题,比如SVR(Support Vector Regression,支持向量回归) 也可以用于分类问题,比如SVC(Support Vector Classification,支持向量分类) 这里简单介绍下SVR:https://scikit-learn.org/stable/modules/svm.html#svm-regression SVM解决回归问题 一.原理示范 Ref: 支持向量机 svc svr svm 感觉不是很好的样子,没有 Bayesian Line…
续上篇 1_Project Overview, Data Wrangling and Exploratory Analysis 使用不同的机器学习方法进行预测 线性回归 在这本笔记本中,将训练一个线性回归模型来预测基于历史能源数据.几个天气变量.一天中的小时.一周中的一天.周末和假期的电源能耗. 为了做到这一点,我们将把模型设定为从2012-01-01到2014-10-31的每日和每小时的能源和天气数据. %matplotlib inline import numpy as np import…
上节课讲了Kernel的技巧如何应用到Logistic Regression中.核心是L2 regularized的error形式的linear model是可以应用Kernel技巧的. 这一节,继续沿用representer theorem,延伸到一般的regression问题. 首先想到的就是ridge regression,它的cost函数本身就是符合representer theorem的形式. 由于optimal solution一定可以表示成输入数据的线性组合,再配合Kernel T…
Outline: 作为一种典型的应用升维的方法,内容比较多,自带体系,以李航的书为主,分篇学习. 函数间隔和几何间隔 最大间隔 凸最优化问题 凸二次规划问题 线性支持向量机和软间隔最大化 添加的约束很像lasso, bridge regression的样子. 何为”支持向量“ 非线性支持向量机与核技巧 没怎么看懂,需要一篇专门学习.李航:P135/251 三个主要API:SVC, NuSVC and LinearSVC are classes capable of performing mult…
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的常见准则有: 1.      均方误差(mean squared error,MSE): 2.      平均绝对误差(mean absolute error,MAE) 3.      R2 score:scikit learn线性回归模型的缺省评价准则,既考虑了预测值与真值之间的差异,也考虑了问题…
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉验证 交叉验证用于评估模型性能和进行参数调优(模型选择).分类任务中交叉验证缺省是采用StratifiedKFold. sklearn.cross_validation.cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jo…