Spark知识点】的更多相关文章

1.Spark架构 分布式spark应用中的组件 在分布式环境下,Spark集群采用的是主/从结构.在一个Spark集群中,有一个节点负责中央协调,调度各个分布式工作节点.这个中央协调节点被称为驱动器(Driver)节点.与之对应的工作节点被称为执行器(executor)节点.驱动器节点可以和大量的执行器节点进行通信,它们也都作为独立的Java进行运行.驱动器节点和所有的执行器节点一起被称为一个Spark应用(application). Spark应用通过一个叫作集群管理器(Cluster Ma…
来自官网的Spark Programming Guide,包括个人理解的东西. 这里有一个疑惑点,pyspark是否支持Python内置函数(list.tuple.dictionary相关操作)?思考加搜索查询之后是这么考虑的:要想在多台机器上分布式处理数据,首先需要是spark支持的数据类型(要使用spark的文件I/O接口来读取数据),pyspark主要是Dataframe:然后需要用到spark的API.本来spark是支持Python的C语言开发的库包,那么Python的内置函数都是可以…
来自官网DataFrames.DataSets.SQL,即sparkSQL模块. 通过dataframe接口,sparkSQL支持多种数据源的操作.可以把dataframe注册为临时视图,也可以通过关系转换. 1)默认格式是parquet,这是一种columnar(柱状的,按列的)的格式,按列存储(如Hadoop中). parquet载入后就是dataframe格式,而dataframe可以直接写出到parquet文件. df = spark.read.load("examples/src/ma…
函数在driver端定义.在executor端被调用执行…
今天,上海尚学堂大数据培训班毕业的一位学生去参加易普软件公司面试,应聘的职位是大数据开发.面试官问了他10个问题,主要集中在Hbase.Spark.Hive和MapReduce上,基础概念.特点.应用场景等问得多.看来,还是非常注重基础的牢固.整个大数据开发技术,这几个技术知识点占了很大一部分.那本篇文章就着重介绍一下这几个技术知识点. 一.Hbase 1.1.Hbase是什么? HBase是一种构建在HDFS之上的分布式.面向列的存储系统.在需要实时读写.随机访问超大规模数据集时,可以使用HB…
0. 零碎概念 (1) 这个有点疑惑,有可能是错误的. (2) 此处就算地址写错了也不会报错,因为此操作只是读取数据的操作(元数据),表示从此地址读取数据但并没有进行读取数据的操作 (3)分区(有时间看HaDoopRDD这个方法的源码,用来计算分区数量的) 物理切片:实际将数据切分开,即以前的将数据分块(每个数据块的存储地址不一样),hdfs中每个分块的大小为128m 逻辑切片:指的是读取数据的时候,将一个数据逻辑上分成多块(这个数据在地址上并没有分开),即以偏移量的形式划分(各个Task从某个…
MLlib的设计原理:把数据以RDD的形式表示,然后在分布式数据集上调用各种算法.MLlib就是RDD上一系列可供调用的函数的集合. 操作步骤: 1.用字符串RDD来表示信息. 2.运行MLlib中的一个特征提取算法来吧文本数据转换为数值的特征.给操作会返回一个向量RDD. 3.对向量RDD调用分类算法,返回一个模型对象,可以使用该对象对新的数据点进行分类. 4.使用MLlib的评估函数在测试数据集上评估模型. 机器学习基础: 机器学习算法尝试根据 训练数据 使得表示算法行为的数学目标最大化,并…
Day1111 Spark任务调度 Spark几个重要组件 Spark Core RDD的概念和特性 生成RDD的两种类型 RDD算子的两种类型 算子练习 分区 RDD的依赖关系 DAG:有向无环图 任务提交 缓存 checkPoint 自定义排序 自定义分区器 自定义累加器 广播变量 Spark Shuffle过程 Spark优化过程 SparkSQL 集成Hive 一.Spark Core 1 Spark任务调度: |->:standalone |->:local |->:Yarn…
day1112 1.spark core复习 任务提交 缓存 checkPoint 自定义排序 自定义分区器 自定义累加器 广播变量 Spark Shuffle过程 SparkSQL 一. Spark Core回顾 1 集群启动 Spark集群启动流程: 1.调用start-alsh脚本,开始启动Master 2.Master启动以后, preStart方法调用了一个定时器,定时的检查超时的Worker. 3.启动脚本会解析slaves配置文件,找到启动Worker的相应节点,开始启动Worke…
Spark处理字符串日期的max和min的方式Spark处理数据存储到Hive的方式Spark处理新增列的方式map和udf.functionsSpark处理行转列pivot的使用Python 3.5.3Spark1.6.2 欢迎访问个人主页和博客 Spark处理字符串日期的max和min的方式 一般是字符串类型的日期在使用Spark的agg求max时,是不正确的,API显示只支持数值型的max.minhive的SQL查询引擎是支持字符串日期的max和min的 字符串日期转为时间戳再聚合 uni…
0.介绍: (1)Spark SQL的前身是Shark,即Hive on Spark, 1.SparkSQL特点: (1)支持多种数据源:Hive,RDD,Parquet,JSON,JDBC等. (2)多种性能优化技术:in-memory columnar storage,byte-code generation,cost model动态评估等 (3)组件扩展:对于SQL的语法解析器.分析器以及优化器,用户都可以自己重新开发,并且动态扩展.SparkSQL的性能对比Shark来说,又有了数倍的提…
文章目录 RDD的依赖关系 宽依赖 窄依赖 血统 RDD缓存 概述 缓存方式 RDD的依赖关系 RDD和它依赖的父RDD的关系有两种不同的类型,即窄依赖(narrow dependency) 和宽依赖(wide dependency). 宽依赖 宽依赖指的是子RDD中的数据来源于父RDD中的多个分区,其实就是产生了shuffle 窄依赖 窄依赖指的是子RDD中的数据来源于父RDD当中的一个分区,也即没有产生shuffle 血统 Lineage -- 根据rdd之间的依赖关系,将依赖关系给记录下来…
Spark SQL概述 1.什么是Spark SQL Spark SQL是Spark用于结构化数据(structured data)处理的Spark模块. 与基本的Spark RDD API不同,Spark SQL的抽象数据类型为Spark提供了关于数据结构和正在执行的计算的更多信息. 在内部,Spark SQL使用这些额外的信息去做一些额外的优化,有多种方式与Spark SQL进行交互,比如: SQL和DatasetAPI. 当计算结果的时候,使用的是相同的执行引擎,不依赖你正在使用哪种API…
Spark SQL概述 1.什么是Spark SQL Spark SQL是Spark用于结构化数据(structured data)处理的Spark模块. 与基本的Spark RDD API不同,Spark SQL的抽象数据类型为Spark提供了关于数据结构和正在执行的计算的更多信息. 在内部,Spark SQL使用这些额外的信息去做一些额外的优化,有多种方式与Spark SQL进行交互,比如: SQL和DatasetAPI. 当计算结果的时候,使用的是相同的执行引擎,不依赖你正在使用哪种API…
spark工作机制,哪些角色,作用. spark yarn模式下的cluster模式和client模式有什么区别.…
1.Shuffle Write 和Shuffle Read具体发生在哪里 2.哪里用到了Partitioner 3.何为mapSideCombine 4.何时进行排序 之前已经看过spark shuffle源码了,现在总结一下一些之前没有理解的小知识点,作为一个总结. 用户自定义的Partitioner存到了哪里? 假设用户在调用reduceByKey时,传递了一个自定义的Partitioner,那么,这个Partitioner会被保存到ShuffleRDD的ShuffleDependency中…
Apache Spark源码剖析(全面系统介绍Spark源码,提供分析源码的实用技巧和合理的阅读顺序,充分了解Spark的设计思想和运行机理) 许鹏 著   ISBN 978-7-121-25420-8 2015年3月出版 定价:68.00元 304页 16开 编辑推荐 Spark Contributor,Databricks工程师连城,华为大数据平台开发部部长陈亮,网易杭州研究院副院长汪源,TalkingData首席数据科学家张夏天联袂力荐 1.本书全面.系统地介绍了Spark源码,深入浅出,…
标签(空格分隔): Spark 学习中的知识点:函数式编程.泛型编程.面向对象.并行编程. 任何工具的产生都会涉及这几个问题: 现实问题是什么? 理论模型的提出. 工程实现. 思考: 数据规模达到一台机器无法处理的时候,如何在有限的时间内对整个数据集进行遍历及分析? Google针对大数据问题提出的一些解决方案: MapReduce: 计算框架: GFS:数据存储 BigTable:NoSQL始祖. Hadoop是根据MapReduce和GFS两大论文所做的开源实现,因此,它主要解决2大问题:数…
前言 本章将对Spark做一个简单的介绍,更多教程请参考:Spark教程 本章知识点概括 Apache Spark简介 Spark的四种运行模式 Spark基于Standlone的运行流程 Spark基于YARN的运行流程 Apache Spark是什么? Spark是一个用来实现快速而通用的集群计算的平台.扩展了广泛使用的MapReduce计算模型,而且高效地支持更多的计算模式,包括交互式查询和流处理.在处理大规模数据集的时候,速度是非常重要的.Spark的一个重要特点就是能够在内存中计算,因…
欢迎转载,转载请注明出处,徽沪一郎. 概要 本文就standalone部署方式下的容错性问题做比较细致的分析,主要回答standalone部署方式下的包含哪些主要节点,当某一类节点出现问题时,系统是如何处理的. Standalone部署的节点组成 介绍Spark的资料中对于RDD这个概念涉及的比较多,但对于RDD如何运行起来,如何对应到进程和线程的,着墨的不是很多. 在实际的生产环境中,Spark总是会以集群的方式进行运行的,其中standalone的部署方式是所有集群方式中最为精简的一种,另外…
欢迎转载,转载请注明出处,徽沪一郎. 概要 在即将发布的spark 1.0中有一个新增的功能,即对sql的支持,也就是说可以用sql来对数据进行查询,这对于DBA来说无疑是一大福音,因为以前的知识继续生效,而无须去学什么scala或其它script. 一般来说任意一个sql子系统都需要有parser,optimizer,execution三大功能模块,在spark中这些又都是如何实现的呢,这些实现又有哪些亮点和问题?带着这些疑问,本文准备做一些比较深入的分析. SQL模块分析有几大难点,分别为…
Spark shell是一个特别适合快速开发Spark原型程序的工具,可以帮助我们熟悉Scala语言.即使你对Scala不熟悉,仍然可以使用这个工具.Spark shell使得用户可以和Spark集群交互,提交查询,这便于调试,也便于初学者使用Spark. 感受到Spark shell是如此的方便,因为它很大程度上基于Scala REPL(Scala 交互式shell,即Scala解释器),并继承了Scala REPL(读取-求值-打印-循环)(Read-Evaluate-Print-Loop)…
转自: [基础]常用的机器学习&数据挖掘知识点 Basis(基础): MSE(Mean Square Error 均方误差),LMS(LeastMean Square 最小均方),LSM(Least Square Methods 最小二乘法),MLE(MaximumLikelihood Estimation最大似然估计),QP(Quadratic Programming 二次规划), CP(Conditional Probability条件概率),JP(Joint Probability 联合概…
基本信息 作者: Spark亚太研究院   王家林 丛书名:决胜大数据时代Spark全系列书籍 出版社:电子工业出版社 ISBN:9787121247446 上架时间:2015-1-6 出版日期:2015 年1月 开本:16 页码:812 版次:1-1 所属分类: 计算机 > 数据库 > 数据库存储与管理 编辑推荐 Life is short, you need Spark! Spark是当今大数据领域最活跃最热门的高效的大数据通用计算平台.基于RDD,Spark成功地构建起了一体化.多元化的…
Spark Contributor,Databricks工程师连城,华为大数据平台开发部部长陈亮,网易杭州研究院副院长汪源,TalkingData首席数据科学家张夏天联袂力荐1.本书全面.系统地介绍了Spark源码,深入浅出,细致入微2.提供给读者一系列分析源码的实用技巧,并给出一个合理的阅读顺序3.始终抓住资源分配.消息传递.容错处理等基本问题,抽丝拨茧4.一步步寻找答案,所有问题迎刃而解,使读者知其然更知其所以然 内容简介 书籍计算机书籍 <Apache Spark源码剖析>以Spark…
本课程主要讲解目前大数据领域最热门.最火爆.最有前景的技术——Spark.在本课程中,会从浅入深,基于大量案例实战,深度剖析和讲解Spark,并且会包含完全从企业真实复杂业务需求中抽取出的案例实战.课程会涵盖Scala编程详解.Spark核心编程.Spark SQL和Spark Streaming.Spark内核以及源码剖析.性能调优.企业级案例实战等部分.完全从零起步,让学员可以一站式精通Spark企业级大数据开发,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从j2ee等传统软件开发工程…
本项目主要讲解了一套应用于互联网电商企业中,使用Java.Spark等技术开发的大数据统计分析平台,对电商网站的各种用户行为(访问行为.页面跳转行为.购物行为.广告点击行为等)进行复杂的分析.用统计分析出来的数据,辅助公司中的PM(产品经理).数据分析师以及管理人员分析现有产品的情况,并根据用户行为分析结果持续改进产品的设计,以及调整公司的战略和业务.最终达到用大数据技术来帮助提升公司的业绩.营业额以及市场占有率的目标. 1.课程研发环境 开发工具: Eclipse Linux:CentOS 6…
终于开始看Spark源码了,先从最常用的spark-shell脚本开始吧.不要觉得一个启动脚本有什么东东,其实里面还是有很多知识点的.另外,从启动脚本入手,是寻找代码入口最简单的方法,很多开源框架,其实都可以通过这种方式来寻找源码入口. 先来介绍一下Spark-shell是什么? Spark-shell是提供给用户即时交互的一个命令窗口,你可以在里面编写spark代码,然后根据你的命令立即进行运算.这种东西也被叫做REPL,(Read-Eval-Print Loop)交互式开发环境. 先来粗略的…
引言 对于Spark开发人员来说,了解stage的划分算法可以让你知道自己编写的spark application被划分为几个job,每个job被划分为几个stage,每个stage包括了你的哪些代码,只有知道了这些之后,碰到某个stage执行特别慢或者报错,你才能快速定位到对应的代码,对其进行性能优化和排错. stage划分原理与源码 接着上期内核源码(五)的最后,每个action操作最终会调用SparkContext初始化时创建的DAGSchedule的runJob方法创建一个job: 那么…
本課主題 Spark Worker 原理 Worker 启动 Driver 源码鉴赏 Worker 启动 Executor 源码鉴赏 Worker 与 Master 的交互关系 [引言部份:你希望读者看完这篇博客后有那些启发.学到什么样的知识点] 更新中...... Spark Worker 原理图 Worker 启动 Driver 源码鉴赏 因为 Worker 中有消息的循环体,可以用来接收消息,接上一章介绍当 Master 把一个 LaunchDriver 发送到 Worker 的时候,Wo…