算法学习笔记(13): Manacher算法】的更多相关文章

本文部分图片来源 代码来源(代码是学姐哒.. 一.引入 Manacher算法是用来求最长回文子串的算法,时间复杂度O(n). 回文子串指的是''aacaa'',''noon'',这种正着反着读都一样的. 二.构造字符串 朴素的求法是O(n^2),以某个字符为中心,向左右扩展,如下图所示. 对于长度为奇数的字符串是可以枚举回文串的中心的,那么偶数的呢? 我们在字符的空里插入其他不在字符串中出现过的字符,如’#‘. 如字符串acca,变为$a#c#c#a#,为了避免出现错误,我们不让首字符等于尾字符…
「Meissel-Lehmer 算法」是一种能在亚线性时间复杂度内求出 \(1\sim n\) 内质数个数的一种算法. 在看素数相关论文时发现了这个算法,论文链接:Here. 算法的细节来自 OI wiki,转载仅作为学习使用. 目前先 mark 一下这个算法,等有空的时候再来研究一下,算法的时间复杂度为 \(\mathcal{O}(n^{\frac23})\) ,所以 \(n\) 的范围可以扩大至 \(10^{12}\) 的级别: 代码实现 #include <bits/stdc++.h>…
Kosaraju算法一看这个名字很奇怪就可以猜到它也是一个根据人名起的算法,它的发明人是S. Rao Kosaraju,这是一个在图论当中非常著名的算法,可以用来拆分有向图当中的强连通分量. 背景知识 这里有两个关键词,一个是有向图,另外一个是强连通分量.有向图是它的使用范围,我们只能使用在有向图当中.对于无向图其实也存在强连通分量这个概念,但由于无向图的连通性非常强,只需要用一个集合维护就可以知道连通的情况,所以也没有必要引入一些算法. 有向图我们都了解,那么什么叫做强连通分量呢?强连通分量的…
在上一篇文章当中我们分享了强连通分量分解的一个经典算法Kosaraju算法,它的核心原理是通过将图翻转,以及两次递归来实现.今天介绍的算法名叫Tarjan,同样是一个很奇怪的名字,奇怪就对了,这也是以人名命名的.和Kosaraju算法比起来,它除了名字更好记之外,另外一个优点是它只需要一次递归,虽然算法的复杂度是一样的,但是常数要小一些.它的知名度也更高,在竞赛当中经常出现. 先给大家提个醒,相比于Kosaraju算法,Tarjan算法更难理解一些.所以如果你看完本文没有搞明白的话,建议可以阅读…
前言 Miller-Rabin 算法用于判断一个数 \(p\) 是否是质数,若选定 \(w\) 个数进行判断,那么正确率约是 \(1-\frac{1}{4^w}\) ,时间复杂度为 \(O(\log p+w\log p)\).(我的实现) Pollard-Rho 算法可以在期望 \(O(n^{\frac{1}{4}})\) 的时间复杂度内找到合数 \(n\) 的某一个非平凡的(即既不是 \(1\),也不是它本身的)因子. 下文中用 \(\mathbb{P}\) 来表示质数集合. Miller-R…
Manacher算法学习笔记 DECLARATION 引用来源:https://www.cnblogs.com/grandyang/p/4475985.html CONTENT 用途:寻找一个字符串的最长回文子串 时间复杂度:O(N) 算法步骤: 1.添加特殊字符 由于回文串的长度可奇可偶,比如"bob"是奇数形式的回文,"noon"就是偶数形式的回文,马拉车算法的第一步是预处理,做法是在每一个字符的左右都加上一个特殊字符,比如加上'#',那么 bob -->…
Johnson 全源最短路径算法学习笔记 如果你希望得到带互动的极简文字体验,请点这里 我们来学习johnson Johnson 算法是一种在边加权有向图中找到所有顶点对之间最短路径的方法.它允许一些边权重为负数,但可能不存在负权重循环.它的工作原理是使用Bellman-Ford 算法来计算输入图的转换,该转换去除了所有负权重,从而允许在转换后的图上使用Dijkstra 算法.Johnson 算法是一种在边加权有向图中找到所有顶点对之间最短路径的方法.它允许一些边权重为负数,但可能不存在负权重循…
最近公共祖先(LCA) 目录 最近公共祖先(LCA) 定义 求法 方法一:树上倍增 朴素算法 复杂度分析 方法二:dfs序与ST表 初始化与查询 复杂度分析 方法三:树链剖分 DFS序 性质 重链 重边 重子结点 剖分方法 剖分作用 复杂度分析 树链剖分拓展 最近公共祖先是树上的概念,不了解树的出门左转百度:树(数据结构名词)_百度百科 定义 假设我们需要求 x 和 y 的最近公共祖先,这里有多种等价的定义 路径x到y上深度最小的点 x和y公共祖先中深度最大的点 x和y在这棵树上距离最近的公共祖…
原始地址:C / C++算法学习笔记(8)-SHELL排序 基本思想 先取一个小于n的整数d1作为第一个增量(gap),把文件的全部记录分成d1个组.所有距离为dl的倍数的记录放在同一个组中.先在各组内进行直接插入排序:然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量dt=1(dt<dt-l<:…<d2<d1),即所有记录放在同一组中进行直接插入排序为止. 该方法实质上是一种分组插入方法. 算法编码 void shellSort(int v[], int n)…
提出混合模型主要是为了能更好地近似一些较复杂的样本分布,通过不断添加component个数,能够随意地逼近不论什么连续的概率分布.所以我们觉得不论什么样本分布都能够用混合模型来建模.由于高斯函数具有一些非常有用的性质.所以高斯混合模型被广泛地使用. GMM与kmeans相似,也是属于clustering,不同的是.kmeans是把每一个样本点聚到当中一个cluster,而GMM是给出这些样本点到每一个cluster的概率.每一个component就是一个聚类中心. GMM(Gaussian Mi…