问题的出现 Question 这个问题是我基于TensorFlow使用CNN训练MNIST数据集的时候遇到的.关键的相关代码是以下这部分: cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) 学习速率是\((1e-4)\)的时候是没有问题,但是当我把学习速率调到\(0.01/0.5\)的时候,很快就会报错. tenso…
tensorflow训练后保存的模型主要包含两部分,一是网络结构的定义(网络图),二是网络结构里的参数值. 1.  .meta文件 .meta 文件以 "protocol buffer"格式保存了整个模型的结构图,模型上定义的操作等信息. 这个文件保存了网络结构的定义.例如 model.ckpt-3072.meta ,大小是 2.9 MB. 2.  .data-00000-of-00001 文件和 .index 文件 .data-00000-of-00001 文件和 .index 文件…
在使用tensorflow的object detection时,出现以下报错 tensorflow Resource exhausted: OOM when allocating tensor with shape 可能的解决方法: 减小训练的batch大小…
from tensorflow.python import pywrap_tensorflow import os checkpoint_path=os.path.join('./model.ckpt-100') reader=pywrap_tensorflow.NewCheckpointReader(checkpoint_path) var_to_shape_map=reader.get_variable_to_shape_map() for key in var_to_shape_map:…
当数据量很大的时候,分类任务通常使用[离散特征+LR]集成[连续特征+xgboost],如果把连续特征加入到LR.决策树中,容易造成overfit. 如果想用上连续型特征,使用集成学习集成多种算法是一种方法,但是一是过程复杂了一些,另外训练过程会非常耗时,在不损失很多特征信息的情况下,可以考虑将连续特征转换成离散特征加入到LR模型中. 转换特征分成两种情况: 第一种情况: 特征还未转化成训练数据所需要的向量格式,此时每个特征为单独的一列,需要对这些单独的列进行离散化分桶. 第二种情况: 所有特征…
用NVIDIA Tensor Cores和TensorFlow 2加速医学图像分割 Accelerating Medical Image Segmentation with NVIDIA Tensor Cores and TensorFlow 2 医学图像分割是当前学术界研究的热点.这方面正在进行的挑战.竞赛和研究项目的数量证明了这一点,这些项目的数量只是逐年上升.在解决这一问题的各种方法中,U-Net已经成为许多2D和3D分割任务的最佳解决方案的骨干.这是因为简单性.多功能性和有效性. 当实践…
简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节点之间则是由张量(Tensor)作为边来连接在一起的.所以Tensorflow的计算过程就是一个Tensor流图.Tensorflow的图则是必须在一个Session中来计算.这篇笔记来大致介绍一下Session.Graph.Operation和Tensor. Session Session提供了O…
[开发技巧]·TensorFlow中numpy与tensor数据相互转化 个人主页–> https://xiaosongshine.github.io/ - 问题描述 在我们使用TensorFlow进行深度学习训练时,很多时候都是与Numpy数据打招呼,例如我们csv或者照片数据等.但是我们都知道,TensorFlow训练时都是使用Tensor来存储变量的,并且网络输出的结果也是Tensor. 一般情况下我们不会感受到Numpy与Tensor之间的区别,因为TensorFlow网络在输入Nump…
模型文件 tensorflow 训练保存的模型注意包含两个部分:网络结构和参数值. .meta .meta 文件以 “protocol buffer”格式保存了整个模型的结构图,模型上定义的操作等信息. 查看 meta 文件中所有的操作信息: # ================================================================ # # 列出 meta 中所有操作 # # =======================================…
TensorFlowSharp入门使用C#编写TensorFlow人工智能应用学习. TensorFlow简单介绍 TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFlow的表现比第一代的DistBelief快了2倍. TensorFlow 内建深度学习的扩展支持,任何能够用计算流图形来表达的计算,都可以使用TensorFlow.任何基于梯度的机器学习算法都能够受益于TensorFlow的自动分化(auto-differentiation).通过灵活…
版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/junyang/p/7429771.html TensorFlow入门 英文原文地址:https://www.tensorflow.org/get_started/get_started 这是关于如何开始tensorFlow的指南.开始之前,你需要先安装TensorFlow.除此之外,你应该了解: 知道如何使用Python编程. 懂一点点数组 如果具有机器学习的知识则更好.当然,如果你没有学习过机器学…
参考资料: 深度学习笔记目录 向机器智能的TensorFlow实践 TensorFlow机器学习实战指南 Nick的博客 TensorFlow 采用数据流图进行数值计算.节点代表计算图中的数学操作,计算图的边表示多维数组,即张量. 在 TensorFlow 官网上将其定义为基于数据流图的数值计算库,TensorFlow 还提供了一个可使得用户用数学方法从零开始定义模型的函数和类的广泛套件.这使得具有一定技术背景的用户可迅速而直观地创建自定义.具有较高灵活性的模型. TensorFlow 的计算模…
本文介绍了tensorflow的常用函数,源自网上整理. TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU.一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测.如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作.并行计算能让代价大的算法计算加速执行,TensorFlow也在实现上对复杂操作进行了有效的改进.大部分核相关的操作都是设备相关的实现,比如GPU. 下面是一些…
目录 认识Tensorflow Tensorflow特点 下载以及安装 Tensorflow初体验 Tensorflow进阶 图 op 会话 Feed操作 张量 变量 可视化学习Tensorboard 认识Tensorflow TensorFlow是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor).它灵活的架构让你可以在多种平台上展开计算,例如台…
摘要:本文主要对tf的一些常用概念与方法进行描述. tf函数 TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU.一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测.如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作. 并行计算能让代价大的算法计算加速执行,TensorFlow也在实现上对复杂操作进行了有效的改进.大部分核相关的操作都是设备相关的实现,比如GPU.下面是…
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S1就是S2的一个超集,反过来,S2是S1的子集. 张量形状: 固定长度: [],() 0阶次:[3],(2,3) 1/2阶次 不定长度:[None] 表示任意长度的向量,(None,3) 表示行数任意,3列的矩阵 获取Op:tf.shape(tensor, name="tensor_shape&qu…
在tf1.0中,对卷积层重新进行了封装,比原来版本的卷积层有了很大的简化. 一.旧版本(1.0以下)的卷积函数:tf.nn.conv2d conv2d( input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None ) 该函数定义在tensorflow/python/ops/gen_nn_ops.py. 参数: input: 一个4维Tensor(N,H,W,C). 类型必须是以下几种类型之…
TensorFlow Playground http://playground.tensorflow.org 帮助更好的理解,游乐场Playground可以实现可视化训练过程的工具 TensorFlow Playground的左侧提供了不同的数据集来测试神经网络.默认的数据为左上角被框出来的那个.被选中的数据也会显示在最右边的 “OUTPUT”栏下.在这个数据中,可以看到一个二维平面上有红色或者蓝色的点,每一个小点代表了一个样例,而点的颜色代表了样例的标签.因为点的颜色只有两种,所以这是 一个二…
本节主要介绍在TensorFlow中实现LSTM以及GRU网络. 一 LSTM网络 Long Short Term 网络—— 一般就叫做 LSTM ——是一种 RNN 特殊的类型,可以学习长期依赖信息.LSTM 由 Hochreiter & Schmidhuber (1997) 提出,并在近期被 Alex Graves 进行了改良和推广.在很多问题,LSTM 都取得相当巨大的成功,并得到了广泛的使用. LSTM 通过刻意的设计来避免长期依赖问题.记住长期的信息在实践中是 LSTM 的默认行为,而…
池化层的作用如下-引用<TensorFlow实践>: 池化层的作用是减少过拟合,并通过减小输入的尺寸来提高性能.他们可以用来对输入进行降采样,但会为后续层保留重要的信息.只使用tf.nn.conv2d来减小输入的尺寸也是可以的,但是池化层的效率更高. 常见的TensorFlow提供的激活函数如下:(详细请参考http://www.tensorfly.cn/tfdoc/api_docs/python/nn.html) 1.tf.nn.max_pool(value, ksize, strides,…
1.tensorflow的基本运作 为了快速的熟悉TensorFlow编程,下面从一段简单的代码开始: import tensorflow as tf #定义‘符号’变量,也称为占位符 a = tf.placeholder("float") b = tf.placeholder("float") y = tf.mul(a, b) #构造一个op节点 sess = tf.Session()#建立会话 #运行会话,输入数据,并计算节点,同时打印结果 print sess…
为了快速的熟悉TensorFlow编程,下面从一段简单的代码开始: import tensorflow as tf #定义‘符号’变量,也称为占位符 a = tf.placeholder("float") b = tf.placeholder("float") y = tf.mul(a, b) #构造一个op节点 sess = tf.Session()#建立会话 #运行会话,输入数据,并计算节点,同时打印结果 print sess.run(y, feed_dict=…
tf.pad()文档如下, pad(tensor, paddings, mode='CONSTANT', name=None, constant_values=0)    Pads a tensor.        This operation pads a `tensor` according to the `paddings` you specify.    `paddings` is an integer tensor with shape `[n, 2]`, where n is the…
『PyTorch』第六弹_最小二乘法对比PyTorch和TensorFlow TensorFlow 控制流程操作 TensorFlow 提供了几个操作和类,您可以使用它们来控制操作的执行并向图中添加条件依赖关系. tf.identity 『TensorFlow』流程控制之tf.identity tf.tuple tf.group 创建一个操作,该操作可以对 TensorFlow 的多个操作进行分组,输入需要进行分组的零个或多个张量. tf.no_op tf.count_up_to tf.cond…
Tensorflow一些常用基本概念与函数(1) 摘要:本文主要对tf的一些常用概念与方法进行描述. 1.tensorflow的基本运作 为了快速的熟悉TensorFlow编程,下面从一段简单的代码开始: import tensorflow as tf #定义‘符号’变量,也称为占位符 a = tf.placeholder("float") b = tf.placeholder("float") y = tf.mul(a, b) #构造一个op节点 sess = t…
张量操作 在tensorflow中,有很多操作张量的函数,有生成张量.创建随机张量.张量类型与形状变换和张量的切片与运算 生成张量 固定值张量 tf.zeros(shape, dtype=tf.float32, name=None) 创建所有元素设置为零的张量.此操作返回一个dtype具有形状shape和所有元素设置为零的类型的张量. tf.zeros_like(tensor, dtype=None, name=None) 给tensor定单张量(),此操作返回tensor与所有元素设置为零相同…
本文主要参考博客https://blog.csdn.net/luoyexuge/article/details/80399265 [1] bazel安装参考:https://blog.csdn.net/luoyi131420/article/details/78585989 [2] 首先介绍下自己的环境是centos7,tensorflow版本是1.7,python是3.6(anaconda3). 要调用tensorflow c++接口,首先要编译tensorflow,要装bazel,要装pro…
Ahmet Taspinar Home About Contact Building Convolutional Neural Networks with Tensorflow Posted on augustus 15, 2017 adminPosted in convolutional neural networks, deep learning, tensorflow 1. Introduction In the past I have mostly written about ‘clas…
零.参考资料 有关FPN的介绍见『计算机视觉』FPN特征金字塔网络. 网络构架部分代码见Mask_RCNN/mrcnn/model.py中class MaskRCNN的build方法的"inference"分支. 1.Keras调用GPU设置 [*]指定GPU import os os.environ["CUDA_VISIBLE_DEVICES"] = "2" [**]按需分配 import tensorflow as tf import ker…
从helloworld开始 mkdir mooc # 新建一个mooc文件夹 cd mooc mkdir 1.helloworld # 新建一个helloworld文件夹 cd 1.helloworld touch helloworld.py # -*- coding: UTF-8 -*- # 引入 TensorFlow 库 import tensorflow as tf # 创建一个 Constant(常量)Operation(操作) hw = tf.constant("Hello World…