GMA Round 1 数列求和(Hard)】的更多相关文章

传送门 数列求和(Hard) 在数列{$a_n$}中,$a_1=-\frac{1}{4}$,$\frac{1}{a_{n+1}}+\frac{1}{a_n}=\begin{cases}-3(n为偶数)\\3(n为奇数) \end{cases}$ 当n趋近于正无穷时,求{$a_n$}的前n项和. 由泰勒公式得 $$\frac{1}{1+x^3}=1-x^3+x^6-x^9+……+(-1)^nx^{3n}+……(x\in(-1,1))$$ 对两端从0到t进行积分得 $$\int_{0}^{t}\fr…
传送门 数列与方程 首项为1,各项均大于0的数列{$a_n$}的前n项和$S_n$满足对于任意正整数n:$S_{n+1}^2-2*S_{n+1}*S_{n}-\sqrt{2}*S_n-1=0$,求$a_{30}$的值,保留3位小数. 由$S_{n+1}^2-2S_{n+1}S_{n}-\sqrt{2}S_n-1=0$,$S_{n+1}=a_{n+1}+S_n$可得$a_{n+1}^2=S_n^2+\sqrt{2}S_n+1=S_n^2+1-2*S_n*cos\frac{3\pi}{4}$. 因此…
传送门 数列求单项 在数列{$a_n$}中,$a_1=-\frac{1}{4}$,$\frac{1}{a_{n+1}}+\frac{1}{a_n}=\begin{cases}-3(n为偶数)\\3(n为奇数) \end{cases}$ 求$a_{233}$的值,保留6位小数. 设$b_n=\frac{1}{a_n}$,易得$b_n=(-1)^n(3n+1)$,因此$a_n=\frac{1}{(-1)^n(3n+1)}$. 定位:简单题…
// //  main.c //  53 - 数列求和 - 李洪强 // //  Created by vic fan on 16/10/15. //  Copyright © 2016年 李洪强. All rights reserved. // #include <stdio.h> int main(int argc, const char * argv[]) { //1 ,3,5,7... //中间有多少项相加 //sum = 0 + 1; //sum = 1 + 3; //sum = 4…
特殊a串数列求和 #include <stdio.h> int main() { int i, a, n, item, sum, temp; while (scanf("%d %d", &a, &n) != EOF) { item = 0; sum = 0; temp = a; for (i = 1; i <= n; i++) { item = temp; sum = item+sum; temp = temp*10 + a; } printf(&qu…
学弟说我好久没更blog了. 因为自己最近其实没干什么. 所以来搬运一下GMA Round 1 的比赛内容吧,blog访问量.网站流量一举两得. 链接:https://enceladus.cf/contest.html?id=1 题目&&解题报告都搬运到blog里了.…
/** * @author 冰樱梦 * 时间:2018年下半年 * 题目:数列求和 * */ public class Exercise06_13 { public static void main(String[] args){ System.out.printf("%-10s%-12s","i","m(i)" ); System.out.println("\n—————————————————————————————————————…
例23  数列求和 问题描述 已知某数列前两项为2和3,其后继项根据前面最后两项的乘积,按下列规则生成: ① 若乘积为一位数,则该乘积即为数列的后继项: ② 若乘积为二位数,则该乘积的十位上的数字和个位上的数字依次作为数列的两个后继项. 输出该数列的前N项及它们的和. 输入格式 一个整数N(2≤N≤1000). 输出格式 第1行输出该数列的前N项的和. 第2行输出该数列的前N项. 输入样例 10 输出样例 sum(10)=44 2 3 6 1 8 8 6 4 2 4 (1)编程思路. 编写函数i…
二次联通门 : LibreOJ #528. 「LibreOJ β Round #4」求和 /* LibreOJ #528. 「LibreOJ β Round #4」求和 题目要求的是有多少对数满足他们的最大公约数的质因子不超过一个 f (x) 表示有多少对数满足最大公约数中含有x^2这个因子 那么f (x) = N / x ^ 2 * M * (x ^ 2) 答案即为所有数字减去不符合要求的数字个数 但是我们发现,可能某对数字的最大公约数含有多个质数平方因子 那么在处理的时候就会重复筛去 这时我…
题目链接:P5745 [深基附B例]数列求和 现在想说:\(O(N)\)的题要不怎么也想不出来,要不灵光乍现,就像这道题. 我们维护一个类似单调队列的加法单调队列: 若相加大于此数,就将队尾元素弹出,直至满足条件,顺便更新下\(maxn\)值即可. 然后遇见了烦人的头尾双指针,多了个等号就只有\(30\;pts\)了. \(Code\): #include<iostream> #include<cstdio> using namespace std; long long sum=0…