c# 画正态分布图】的更多相关文章

/// <summary> /// 提供正态分布的数据和图片 /// </summary> public class StandardDistribution { /// <summary> /// 样本数据 /// </summary> public List<double> Xs { get; private set; } public StandardDistribution(List<double> Xs) { this.Xs…
检验模型是否满足正态性假设的方法: 1.正态概率图 这是我编写的画正态概率图的函数: #绘制正态概率图 plot_ZP = function(ti) #输入外部学生化残差 { n = length(ti) order = rank(ti) #按升序排列,t(i)是第order个 Pi = (order-1/2)/n #累积概率 plot(ti,Pi,xlab = "学生化残差",ylab = "百分比") #画正态概率图 #添加回归线 fm = lm(Pi~ti)…
code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && document.readyState && document.readyState === "complete") { window.setTimeout(function() { hljs.initHighlighting(); }, 0);} .main-container…
[译文]利用STAN做贝叶斯回归分析:Part 2 非正态回归 作者 Lionel Hertzogn 前一篇文章已经介绍了怎样在R中调用STAN对正态数据进行贝叶斯回归.本文则将利用三个样例来演示怎样在R中利用STAN拟合非正态模型. 三个样例各自是negative binomial回归(过离散的泊松数据).gamma回归(右偏的连续数据)和beta-binomial回归(过离散的二项数据). 相关的STAN代码及一些说明会贴在本文末尾. 负二项回归 泊松分布经常使用于计数数据建模,它如果了数据…
本节内容 1:样本估计总体均值跟标准差,以及标准误 2:中心极限定理 3:如何查看数据是否是正态分布QQ图 4:置信区间的理解跟案例 5:假设检验 参考文章: 假设检验的学习和理解 一.样本估计总体均值跟标准差 多组抽样 估计总体均值 = mean(多组的各个均值) 估计总体标准差 = sd(多组的各个标准差) 标准误 = sd(多组的各个均值) 一组抽样 估计总体均值 = mean(一组的均值) 估计总体标准差 = sd(一组的标准差) 标准误 = 估计的标准差/ sqrt(n) 标准误: 真…
来源:丁香园论坛:SPSS上的把非正态分布数据转换为正态分布数据 一楼 可以应用变量变换的方法,将不服从正态分布的资料转化为非正态分布或近似正态分布.常用的变量变换方法有对数变换.平方根变换.倒数变换.平方根反正玄变换等,应根据资料性质选择适当的变量变换方法. 对数变换 即将原始数据X的对数值作为新的分布数据: X'=lgX 当原始数据中有小值及零时,亦可取X'=lg(X+1) 还可根据需要选用X'=lg(X+k)或X'=lg(k-X) 对数变换常用于(1)使服从对数正态分布的数据正态化.如环境…
opencv3.0版本中,实现正态贝叶斯分类器(Normal Bayes Classifier)分类实例 #include "stdafx.h" #include "opencv2/opencv.hpp" using namespace cv; using namespace cv::ml; int main(int, char**) { , height = ; Mat image = Mat::zeros(height, width, CV_8UC3); //创…
正态检验与R语言 1.Kolmogorov–Smirnov test 统计学里, Kolmogorov–Smirnov 检验(亦称:K–S 检验)是用来检验数据是否符合某种分布的一种非参数检验,通过比较一个频率分布f(x)与理论分布g(x)或者两个观测值分布来判断是否符合检验假设.其原假设H0:两个数据分布一致或者数据符合理论分布.拒绝域构造为:D=max| f(x)- g(x)|,当实际观测值D>D(n,α)则拒绝H0,否则则接受H0假设.由于KS检验不需要知道数据的分布情况,在小样本的统计分…
在循环的语句的练习中,画正三角是一个很经典的例子,但是如果方法找的不对的话,即使最终画出来了,那么得到的代码也是非常的复杂,应用性不高. 下面有两种方法来画正三角,第一种是一种比较麻烦的办法,是通过归纳每行与列与所要求的三角形的内在关系得到的,比较繁琐 package complementation; public class trangle { public static void main(String[] args) { int row = 6; for (int i = 1; i <=…
5 估计量和估计值是什么? 估计量不是估计出来的量,是用于估计的量. 估计量:用于估计总体参数的随机变量,一般为样本统计量.如样本均值.样本比例.样本方差等.例如:样本均值就是总体均值的一个估计量. 估计值就是估计出来的数值. 可以在点估计上使用样本方差估计总体方差吗? 可以,是无偏的. 置信度与置信水平的关系? 置信度是0.05,置信水平是0.95 来自非正态的小样本如何处理? 按照样本原生分布处理 两总体均值之差两种方差情况下的自由度? 使用t分布的动机是什么? 抽样分布正态,但是总体方差未…
假设检验的基本思想 若对总体的某个假设是真实的,那么不利于或者不能支持这一假设的事件A在一次试验中是几乎不可能发生的:如果事件A真的发生了,则有理由怀疑这一假设的真实性,从而拒绝该假设: 假设检验实质上是对原假设是否正确进行检验,因此检验过程中要使原假设得到维护,使之不轻易被拒绝:否定原假设必须有充分的理由.同时,当原假设被接受时,也只能认为否定该假设的根据不充分,而不是认为它绝对正确 ks 检验 ks 检验分为 单样本 和两样本 检验: 单样本检验 用于 检验 一个数据的观测分布 是否符合 某…
目录 前言 一.算法介绍 二.核心算法 1. 公式 2.python实现 总结 前言 使用python简单实现机器学习中正态方程算法. 一.算法介绍 与梯度下降算法相比,正态方程同样用于解决最小化代价函数J,不同的是,梯度下降算法通过迭代计算获得最小J的theta值,而正态方程则是通过直接对J进行求导,直接获得满足条件的theta值. 二.核心算法 1. 公式 正态方程通过矩阵运算求得theta. X为数据集中x的矩阵,y为数据集中y的矩阵. 2.python实现 import numpy as…
1.坐标点类 package cn.test.domain; public class Point { double x; double y; public Point(){ } public Point(double x, double y) { super(); this.x = x; this.y = y; } public double getX() { return x; } public void setX(double x) { this.x = x; } public doubl…
二.分类图 1. 分类散点图 (1)散点图striplot(kind='strip') 方法1: seaborn.stripplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, jitter=True, dodge=False, orient=None, color=None, palette=None, size=5, edgecolor='gray', linewidth=0, ax=None, **kwa…
1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的个数,kernel_size卷积核的大小,stride步长,padding是否补零 2. tf.layers.conv2d_transpose(input, filter, kernel_size, stride, padding) # 进行反卷积操作 参数说明:input输入数据, filter特…
以surfer 12版本为例: 1.下载世界地图,这里我随便提供一个范例(侵删,忘记出处了): 2.进入surfer软件,选择“MAP”——“NEW”——“BASE MAP”. 以此按照以上步骤,在弹出的对话框中选中我们下载的世界地图,作为底图: 3.本文以采集中国北京.德国柏林.澳大利亚悉尼.美国纽约的温度为例说明: 准备中国北京.德国柏林.澳大利亚悉尼.美国纽约这四个地方的温度信息: 4.采集中国北京.德国柏林.澳大利亚悉尼.美国纽约的经纬度信息: 这里以中国北京为例,鼠标右击中国北京在地图…
链接: http://stackoverflow.com/questions/2328258/cumulative-normal-distribution-function-in-c-c http://www.johndcook.com/blog/cpp_phi/ 个人使用的是如下的代码: static double CND(double d) { const double A1 = 0.31938153; const double A2 = -0.356563782; const double…
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/zhjm07054115/article/details/27631913…
高驰涛 云智慧首席架构师 据云智慧统计,APM从客户端采集的性能数据可能占到业务数据的50%,而企业要做到从Request到Response整个链路中涉及到的所有数据的准确采集,并进行有效串接,进而实现真正的端到端,绝非一件易事. 那么云智慧是如何进行APM数据采样的,又是如何在“端到端”应用性能管理中满足用户对业务数据的高性能分析的呢?在2016年9月全球运维大会的APM专场上,云智慧首席架构师高驰涛先生为你揭晓APM背后的大数据奥秘. 高驰涛(Neeke Gao),云智慧首席架构师,PHP/…
MATLAB中文论坛帖子整理(GUI) 目   录  1.GUI新手之——教你读懂GUI的M文件... 10 2.GUI程序中改变current directory引起的问题... 15 3.GUI中h0bject和handles 的区别... 16 4.handles结构中句柄和对象的关联问题... 17 5.Matlab利用定时器连续显示图片的问题... 19 5-1.GUI中实现在图片任意位置上标注text. 22 5-2.使用edit的另外一种callback. 22 6.MATLAB…
通过考虑估算中的不确定性和风险,可以提高持续时间估算的准确性. 最可能时间(tM):基于最可能获得的资源.最可能取得的资源生产率.对资源可用时间的现实预计,资源对其他参与者的可能依赖关系及可能发生的各种干扰等,所估算的活动持续时间,这里简写为M 最乐观时间(tO): 基于活动的最好情况所估算的活动持续时间,这里简写为O 最悲观时间(tP): 基于活动的最差情况所估算的活动持续时间,这里简写为P 期望值:Te=(P+4M+O)/6         标准差:δ=(P-O)/6         方差:…
统计学上分布有很多,在R中基本都有描述.因能力有限,我们就挑选几个常用的.比较重要的简单介绍一下每种分布的定义,公式,以及在R中的展示. 统计分布每一种分布有四个函数:d――density(密度函数),p――分布函数,q――分位数函数,r――随机数函数.比如,正态分布的这四个函数为dnorm,pnorm,qnorm,rnorm.下面我们列出各分布后缀,前面加前缀d.p.q或r就构成函数名:norm:正态,t:t分布,f:F分布,chisq:卡方(包括非中心) unif:均匀,exp:指数,wei…
http://www.cqt8.com/soft/html/723.html下载,官网下载 (转帖)1.定义: 蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数估计量和统计量,进而研究其分布特征的方法. 2.基于计算机的蒙特卡洛模拟实现步骤:(1)对每一项活动,输入最小.最大和最可能估计数据(注意这里不是三点估算),并根据提出的问题构造或选择一个简单.适用的概率分布模型,使问题的解对应于该模型中随机变量的某些特征(如概率.均值和方差等),这些特征都可以通过…
EDA(探索性数据分析)最常用的过程步之一就是PROC UNIVARIATE. 首先先看一个最简单的PROC UNIVARIATE程序: PROC UNIVARIATE DATA=SASHELP.FISH; WHERE SPECIES='Bream'; VAR HEIGHT; RUN; 上述代码得到的结果有:矩.位置和可变形的基本测度.位置检验.分位数.极值观测.具体如下: 解读:首先看第一张表——矩,其中N=35代表该进入分析变量有35条观测,偏度约0.2稍微有点负偏态(右偏),变异系数12(…
1. 异常检测 VS 监督学习 0x1:异常检测算法和监督学习算法的对比 总结来讲: . 在异常检测中,异常点是少之又少,大部分是正常样本,异常只是相对小概率事件 . 异常点的特征表现非常不集中,即异常种类非常多,千奇百怪.直白地说:正常的情况大同小异,而异常各不相同.这种情况用有限的正例样本(异常点)给有监督模型学习就很难从中学到有效的规律 0x2:常见的有监督学习检测算法 这块主要依靠庞大的打标样本,借助像DLearn这样的网络对打标训练样本进行拟合 0x3:常见的异常检测算法 基于模型的技…
第十三次作业——回归模型与房价预测 1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模型,并检测模型好坏,并图形化显示检查结果. 4.  一元多项式回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 代码: #导入boston房价数据集 from sklearn.datasets import load_boston import pandas as pd boston =…
用np.random.normal()产生一个正态分布的随机数组,并显示出来. np.random.randn()产生一个正态分布的随机数组,并显示出来. 显示鸢尾花花瓣长度的正态分布图,曲线图,散点图. import numpy as np # 导入鸢尾花数据 from sklearn.datasets import load_iris data = load_iris() pental_len = data.data[:,2] # 计算鸢尾花花瓣长度最大值,平均值,中值,均方差 print(…
#导包 import numpy as np #导入鸢尾花数据 from sklearn.datasets import load_iris data = load_iris() pental_len = data.data[:,2] print(pental_len) #计算尾花花瓣长度的最大值,平均值,中值,均方差 print("最大值:",np.max(pental_len)) print("平均值:",np.mean(pental_len)) print(&…