BZOJ_4238_电压_树上差分+dfs树】的更多相关文章

BZOJ_4238_电压_树上差分+dfs树 Description 你知道Just Odd Inventions社吗?这个公司的业务是“只不过是奇妙的发明(Just Odd Inventions)”.这里简称为JOI社. JOI社的某个实验室中有着复杂的电路.电路由n个节点和m根细长的电阻组成.节点被标号为1~N 每个节点有一个可设定的状态[高电压]或者[低电压].每个电阻连接两个节点,只有一端是高电压,另一端是低电压的电阻才会有电流流过.两端都是高电压或者低电压的电阻不会有电流流过. 某天,…
首先可以想到对每个点统计出所有经过它的链的并所包含的点数,然后可以直接得到答案.根据实现不同有下面几种方法.三个log:假如对每个点都存下经过它的链并S[x],那么每新加一条路径进来的时候,相当于在路径上所有点的S中都加入这条路径.树剖之后,相当于对log个区间中的点都加入log个区间.具体实现有树剖后线段树维护虚树.矩形扫描线.线段树+set存区间等多种方法,这里不再多说.两个log:先树剖,然后对每个点开一棵线段树存储它的S,由于题中没有修改,所以可以树上差分+线段树合并,这样可以将方法一中…
[BZOJ3307] 雨天的尾巴(树上差分+线段树合并) 题面 给出一棵N个点的树,M次操作在链上加上某一种类别的物品,完成所有操作后,要求询问每个点上最多物品的类型. N, M≤100000 分析 考虑树上差分.对于每条链(x,y),我们在x,y打一个+标记,lca(x,y)和lca(x,y)的父亲打一个-标记.然后在每个节点建立一棵权值线段树,下标v维护物品v的个数.如果有物品v,就把下标为v的位置+1,如果有-标记,就-1.线段树push_up的时候可以计算出最多物品的类型 然后从下往上线…
考虑没有深度限制怎么做.显然的做法是直接转成dfs序上主席树,但如果拓展到二维变成矩形数颜色数肯定没法做到一个log. 另一种做法是利用树上差分.对于同种颜色的点,在每个点处+1,dfs序相邻点的lca处-1,那么查询子树颜色数就只需要查询子树和了. 然后加上深度限制.考虑将点一层层加进去,利用set查找dfs序中前驱后继同色点,对dfs序建线段树实现动态树上差分.于是再对深度建主席树就可以在线回答询问了. #include<iostream> #include<cstdio> #…
对每个权值分别考虑.则只有单点加路径求和的操作.树上差分转化为求到根的路径和,子树加即可.再差分后bit即可.注意树上差分中根的父亲是0,已经忘了是第几次因为这个挂了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #defi…
首先村落里的一共有n座房屋,并形成一个树状结构.然后救济粮分m次发放,每次选择两个房屋(x,y),然后对于x到y的路径上(含x和y)每座房子里发放一袋z类型的救济粮. 然后深绘里想知道,当所有的救济粮发放完毕后,每座房子里存放的最多的是哪种救济粮. Solution 一看到链上操作,最后统计答案,自然而然的想到树上差分,a++ ,b++,lca--,fa[lca]--就可以完成一条链的操作. 但这道题加的东西有好多种类. 所以考虑对每个节点开一颗线段树,每次在对应位置加上. 然后我们DFS的时候…
传送门 要求维护每个点上出现次数最多的颜色. 对于每次修改,我们用树上差分的思想,然后线段树合并统计答案就行了. 注意颜色很大需要离散化. 代码: #include<bits/stdc++.h> #define N 100005 #define Max 100000 using namespace std; inline int read(){ int ans=0; char ch=getchar(); while(!isdigit(ch))ch=getchar(); while(isdigi…
这居然是我第一次写线段树合并--所以我居然在合并的时候加点结果WAWAWAMLEMLEMLE--!ro的时候居然直接指到la就行-- 树上差分,每个点建一棵动态开点线段树,然后统计答案的时候合并即可 #include<iostream> #include<cstdio> #include<queue> using namespace std; const int N=100005; int n,m,h[N],cnt,de[N],fa[N],si[N],hs[N],fr[…
长久以来的心理阴影?但是其实非常简单-- 预处理出deep和每组st的lca,在这里我简单粗暴的拿树剖爆算了 然后考虑对于一组s t lca来说,被这组贡献的观察员x当且仅当: x在s到lca的路径上,且w[x]==de[s]-de[x]-->de[x]+w[x]==de[s]; x在lca到t的路径上,且w[x]==de[x]-de[lca]+de[s]-de[lca]-->de[x]-w[x]==de[s]-2de[lca]; 然后把这一段拆成四个点(树上差分),一遍dfs统计状态即可 注…
暴力树剖做法显然,即使做到两个log也不那么优美. 考虑避免树剖做到一个log.那么容易想到树上差分,也即要对每个点统计所有经过他的路径产生的总贡献(显然就是所有这些路径端点所构成的斯坦纳树大小),并支持在一个log内插入删除合并. 考虑怎么求树上一些点所构成的斯坦纳树大小.由虚树的构造过程容易联想到,这就是按dfs序排序后这些点的深度之和-相邻点的lca的深度之和(首尾视作相邻),也就相当于按dfs序遍历所有要经过的点并回到原点的路径长度/2. 这个东西显然(应该)可以set启发式合并维护,但…
显然的树上差分问题,最后要我们求每个点数量最多的物品,考虑对每个点建议线段树,查询子树时将线段树合并可以得到答案. 用动态开点的方式建立线段树,注意离散化. 1 #include<bits/stdc++.h> 2 using namespace std; 3 const int N = 1e5 + 10; 4 struct node { 5 int lc, rc, dat, pos;//dat记录最多的物品的次数,pos记录位置 6 }tr[N * 20 * 4]; 7 int head[N]…
Description 给您一颗树,每个节点有个初始值. 现在支持以下两种操作: 1. C i x(0<=x<2^31) 表示将i节点的值改为x. 2. Q i j x(0<=x<2^31) 表示询问i节点到j节点的路径上有多少个值为x的节点. Input 第一行有两个整数N,Q(1 ≤N≤ 100,000:1 ≤Q≤ 200,000),分别表示节点个数和操作个数. 下面一行N个整数,表示初始时每个节点的初始值. 接下来N-1行,每行两个整数x,y,表示x节点与y节点之间有边直接相…
将每个人跑步的路径拆分成x->lca,lca->y两条路径分别考虑: 对于在点i的观察点,这个人(s->t)能被观察到的充要条件为: 1.直向上的路径:w[i]=dep[s]-dep[i],移项得w[i]+dep[i]=dep[s] 2.直向下的路径:w[i]=dep[s]-dep[lca]+dep[i]-dep[lca],移项得w[i]-dep[i]=dep[s]-2*dep[lca]. 问题转化为,对每个点i,统计它的子树中有多少个点x满足dep[x]=w[i]+dep[i]或dep…
题目大意:给你一棵树,树上一共n个节点,共m次操作,每次操作给一条链上的所有节点分配一个权值,求所有节点被分配到所有的权值里,出现次数最多的权值是多少,如果出现次数相同就输出最小的. (我辣鸡bzoj的权限号,洛谷上P4556也有这道题) 线段树合并入门题 也是比较常规的树上链的点差分 每次操作都在x,y上+1,在lca(x,y),fa[lca(x,y)]上-1 然后对每个点的所有差分操作构建一颗动态开点线段树,然后从叶节点向上合并即可 特别的,只有线段树的最底层存的是实际打的差分,而上层节点仅…
题目大意:给你一颗树,树上每个点都有一个观察员,他们仅会在 w[i] 时刻出现,观察正在跑步的玩家 一共有m个玩家,他们分别从节点 s[i] 同时出发,以每秒跑一条边的速度,沿着到 t[i] 的唯一路径向节点t[i]奔跑 如果一名玩家已经到达了终点,那么在他到达终点之后出现在终点的观察员不会观察到他 但如果在到达终点的同时观察员也出现在终点,那么观察员可以观察到他 求每个节点的观察员观察到玩家的数量 对于每个玩家的奔跑路线,可以拆成两部分 <1>向上跑,从 u 向 lca 奔跑 显然,玩家 u…
原题链接戳这儿 SOLUTION 考虑一种非常\(naive\)的统计方法,就是对于每一个点\(u\),我们维护它能到达的点集\(S_u\),最后答案就是\(\frac{\sum\limits_{i=1}^{n}|S_i|}{2}\) 也就是说我们可以先树剖一下,对于每一个点都开一棵线段树,每次修改\(O(nlogn)\)地更新一下路径上的线段树,最后查询一下就行了 但是这样的复杂度是\(O(n^2log^2n)\)的,显然会炸.注意到每次是对一条链上的所有点操作,所以我们可以查分.又因为差分之…
题意:给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q次询问,每次询问给出l r z,求sigma_{l<=i<=r}dep[LCA(i,z)].(即,求在[l,r]区间内的每个节点i与z的最近公共祖先的深度之和) n<=50000 思路:From THU爷 LYY 我们考虑这样一种暴力: 对于dep[lca(i,j)],可以将0~i路径上的点的权值+1,那么答…
BZOJ_3307_雨天的尾巴_线段树合并 Description N个点,形成一个树状结构.有M次发放,每次选择两个点x,y 对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成 所有发放后,每个点存放最多的是哪种物品. Input 第一行数字N,M 接下来N-1行,每行两个数字a,b,表示a与b间有一条边 再接下来M行,每行三个数字x,y,z.如题 Output 输出有N行 每i行的数字表示第i个点存放最多的物品是哪一种,如果有 多种物品的数量一样,输出编号最小的.如果某个点没有物品…
即删除一条边使图中不存在奇环.如果本身就是个二分图当然任意一条边都可以,先check一下.否则肯定要删除在所有奇环的交上的边. 考虑怎么找这些边.跑一遍dfs造出dfs树,找出返祖边构成的奇环.可以通过树上差分标记奇环上的边. 但是这显然只包含了一部分奇环.注意到如果某条在奇环上的边同时也在一个偶环上,一定可以找到一个不包含这条边的奇环.并且图中所有其他奇环都是由所找到的奇环加上偶环得到的,所以这就是充分的了. 数据中有重边自环,自环特判一下比较舒服,而任意一条重边都不可能在答案中(本身就是二分…
题目描述 科学家在“无限神机”($Infinity\ Machine$)找到一个奇怪的机制,这个机制有$N$个元件,有$M$条电线连接这些元件,所有元件都是连通的.两个元件之间可能有多条电线连接.科学家对这些元件可以任意地设置为“高电压”和“低电压”两种模式,如果一条电线的一端为高电压,另一端为低电压,这条电线就会产生电流.为了安全的研究“无限神机”,科学家需要找到一条电线,将它的两端设为相同的电压,并且除选择的这条电线外,其它所有电线都有电流(否则就没有研究的价值了).有多少条电线满足这样的条…
前置芝士:[LNOI2014]LCA 要是这题放HNOI就好了 原题:\(\sum_{l≤i≤r}dep[LCA(i,z)]\) 这题:\(\sum_{i≤r}dep[LCA(i,z)]^k\) 对于原题,我们需要把每个询问拆成1~l-1 & 1~r再进行差分(所以这题帮我们省去了一个步骤) 先考虑\(k=1\)原题 我们先转化题意 \(dep[lca]\)\(\\)==\(\\)\(dis[1][lca]+1\)\(\\)==\(\\)\(lca->1\)的点数 所以我们每一个点(x)对答…
https://www.lydsy.com/JudgeOnline/problem.php?id=2588 题意:强制在线的询问树链权值第K小(无修) 这种类似于第K小的题,一般容易想到主席树,但是树链并不能不是一个按顺序的序列,使用树链剖分也不太容易维护几条链之间的第K小关系. 但是可以从主席树的前缀和思想入手,一般情况的主席树,查询的时候是query(R) - query(L - 1)来询问区间内的数值数量,在这一题里面,可以考虑到树上差分,从树根开始,以每一个点的父亲为前缀建立主席树. 然…
https://www.lydsy.com/JudgeOnline/problem.php?id=4326 题意:N个点的树上给M条树链,问去掉一条边的权值之后所有树链长度和的最大值最小是多少. 首先想到去掉的树边一定是最长链上的树边,所以产生的思路就是寻找出一条询问里的最长链之后依次枚举上面所有的边,询问去掉这条边之后其余所有边的最大值. 由于N和M都在30W,直接暴力肯定不行,考虑转换思维,变为维护不经过这条边上的所有链的最大值,在这个最大值和最长链 - 这条边权之中取较大的值就是去掉这条边…
某两个点间的请求只对不在这条路径上的询问有影响.那么容易想到每次修改除该路径上的所有点的答案.对每个点建个两个堆,其中一个用来删除,线段树维护即可.由于一条路径在树剖后的dfs序中是log个区间,所以其补集也是log个区间. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm>…
线段树分裂 以某个键值为中点将线段树分裂成左右两部分,应该类似Treap的分裂吧(我菜不会Treap).一般应用于区间排序. 方法很简单,就是把分裂之后的两棵树的重复的\(\log\)个节点新建出来,单次时间复杂度严格\(O(\log n)\). 至于又有合并又有分裂的复杂度,蒟蒻一直不会比较有说服力的证明,直到看见SovietPower巨佬的题解 对于只有合并:合并两棵线段树的过程,是找到它们\(x\)个重合的节点的位置,并将它们合并,而对于不重合的节点会跳过. 注意到合并与分裂类似互逆过程,…
建出AC自动机及其fail树,每次给新加入的串在AC自动机上经过的点染色,问题即转化为子树颜色数.显然可以用dfs序转成序列问题树状数组套权值线段树解决,显然过不掉.事实上直接树上差分,按dfs序排序后lca处-1,树状数组维护子树和即可. 又一次写了cmp后没放进sort,心态爆炸. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstri…
洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上差分的小套路--每一个点到根的前缀和还是很好维护对吧. 询问\(u,v\)的时候,我们可以知道\(size[root,u]\)和\(size[root,v]\)的和. 但我们需要的只是一条路径,\(lca(u,v)\)以上的全不要,\(lca(u,v)\)也只要算一次. 于是用\(size[root…
SADPAIRS 删点不连通,点双,圆方树 非割点:没有影响 割点:子树DP一下 有不同颜色,所以建立虚树 在圆方树上dfs时候 如果当前点是割点 1.统计当前颜色虚树上的不连通点对,树形DP即可 2.统计所有颜色的虚树上的不连通点对.... 一个麻烦事是,虚树上一条边上选择一个原树割点,都会对这个虚树造成相同的影响(两边sz乘积) n,m 2e5 树上差分 设虚树上,(x,y)的边,x是y的父亲 原树上,x的位置减去贡献,y的原树father位置加上贡献 最后dfs扫一遍就行了. 实际上麻烦事…
树的直径: 利用了树的直径的一个性质:距某个点最远的叶子节点一定是树的某一条直径的端点. 先从任意一顶点a出发,bfs找到离它最远的一个叶子顶点b,然后再从b出发bfs找到离b最远的顶点c,那么b和c之间的距离就是树的直径. 用dfs也可以. 模板: ; int head[N]; int dis[N]; bool vis[N]; ,b,mxn=; struct edge { int to,w,next; }edge[N]; void add_edge(int u,int v,int w) { e…
\(N\)个点,形成一个树状结构.有\(M\)次发放,每次选择两个点\(x,y\) 对于\(x\)到\(y\)的路径上(含\(x,y\))每个点发一袋\(Z\)类型的物品.完成 所有发放后,每个点存放最多的是哪种物品. Input 第一行数字\(N\),\(M\) 接下来\(N-1\)行,每行两个数字\(a,b\),表示\(a\)与\(b\)间有一条边 再接下来\(M\)行,每行三个数字\(x,y,z\).如题 Output 输出有\(N\)行 每i行的数字表示第\(i\)个点存放最多的物品是哪…