不带数据库的SpringBootMVC案例 1.创建一个SpringBoot项目,添加thymeleaf,webstarter 2.目录层级 3.启动器代码 package com.littlepage; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; @SpringBootApplication publ…
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Zeros and Ones: Sum of a sample with replacement $S$ is the number of successes: $n$ independent trials, chance of success on a sing…
Server-Side UI Automation Provider - WinForm Sample 2014-09-14 源代码  目录 引用程序集提供程序接口公开服务器端 UI 自动化提供程序从 UI 自动化提供程序返回属性从 UI 自动化提供程序中引发事件在 UI 自动化提供程序中支持控件模式WinForm Sample参考 引用程序集[1] 返回 UI 自动化提供程序项目必须引用以下程序集: UIAutomationProviders.dll UIAutomationTypes.dll…
spring boot提供了sample程序,学习spring boot之前先跑一个最简单的示例: /* * Copyright 2012-2016 the original author or authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * Y…
原文地址:http://hannesdorfmann.com/annotation-processing/annotationprocessing101 In this blog entry I would like to explain how to write an annotation processor. So here is my tutorial. First, I am going to explain to you what annotation processing is, w…
w3c reference : https://www.w3.org/TR/2014/REC-html5-20141028/introduction.html#writing-secure-applications-with-html HTML user agents (e.g. Web browsers) then parse this markup, turning it into a DOM (Document Object Model) tree. A DOM tree is an in…
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) ADDITIONAL PRACTICE FOR THE FINAL PROBLEM 1 A box contains 8 dark chocolates, 8 milk chocolates, and 8 white chocolates. (It’s amazing how t…
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) PRACTICE PROBLEMS FOR THE MIDTERM PROBLEM 1 In a group of 5 high school students, 2 are in 9th grade, 2 are in 10th grade, and 1 is in 12th…
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Independent $$P(A\cap B)=P(A)\cdot P(B)$$ Binomial Distribution $$C_{n}^{k}\cdot p^k\cdot(1-p)^{n-k}$$ R function: dbinom(k, n, p) U…
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) ADDITIONAL PRACTICE FOR THE FINAL In the following problems you will be asked to choose one of the four options (A)-(D). The options are sta…