正解:网络流 解题报告: 传送门$QwQ$ 看到不能出现给定的讨厌的图形,简单来说就,特殊边两侧的方格不能同时再连方格. 所以如果出现,就相当于是四种方案?就分别炸四个格子. 然后冷静分析一波之后发现对于特殊边两侧的格子炸那个是没有影响的?于是这两个格子就只用选较小的一个炸就好,于是现在就变成了三种方案,可以考虑和之前做的那道,酒店之王,差不多的建图,$over$ #include<bits/stdc++.h> using namespace std; #define il inline #d…
Description 老 C 是个程序员. 作为一个懒惰的程序员,老 C 经常在电脑上玩方块游戏消磨时间.游戏被限定在一个由小方格排成的R行C列网格上 ,如果两个小方格有公共的边,就称它们是相邻的,而且有些相邻的小方格之间的公共边比较特殊.特殊的公共边排 列得有很强的规律.首先规定,第1行的前两个小方格之间的边是特殊边.然后,特殊边在水平方向上每4个小方格为 一个周期,在竖直方向上每2个小方格为一个周期.所有的奇数列与下一列之间都有特殊边,且所在行的编号从左到 右奇偶交替.下图所示是一个R =…
四染色,贼好想 一个弃疗图形刚好对应一个红-绿-黄-粉色路线(不要吐槽颜色) 就是裸的最小割,建图傻逼懒得写了 #include<bits/stdc++.h> #define il inline #define vd void typedef long long ll; il int gi(){ int x=0,f=1; char ch=getchar(); while(!isdigit(ch)){ if(ch=='-')f=-1; ch=getchar(); } while(isdigit(…
题目链接 (Luogu) https://www.luogu.org/problem/P3756 (BZOJ) http://lydsy.com/JudgeOnline/problem.php?id=4823 题解 有点神仙的最小割题. 考虑题目里的图形,如果我们用四种颜色对棋盘进行染色,奇数行依次染\(0,1,2,3,0,1,2,3...\), 偶数行依次染\(3,2,1,0,3,2,1,0...\)则条件可以转化为不能出现相连的\(4\)个颜色互不相同的块. 那么可以建一个四层的图,对于每条…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4823 https://www.luogu.org/problemnew/show/P3756 巧妙建图: 其实“俄罗斯方块”就是选择一条特殊边两边的方格,左右两边周围的六个中再各选两个: 于是可以把图“四分”,特殊边两边的格子算两种,而且奇数行和偶数行恰好相反,然后两边围着的格子也算两种: 然后不能有上面四种可选方格同时存在的情况,建出图来跑最小割即可. 代码如下: #include<cs…
洛谷 题意: 给出一个网格图类似于这样: 现在给出一个\(n*m\)大小的网格,之后会给出一些点,若某些点相连形成了如下的几个图案,那么就是不好的. 现在可以删去一些点,但删除每个点都有一些代价,问最终不出现上述图案的最小代价为多少. 思路: 初一看这图是什么乱七八糟的,但仔细观察能够发现它们的共性:对于蓝色的边两旁的格子,我们称为灰点:若有两个灰点相连,并且它们各自至少还连接了一个点,那么就是不合法的图案. 同时观察网格奇偶性,之后对网格奇偶染色. 然后初步思路为:源点连向所有白点,容量为白点…
题目 题目oj(洛谷) Farmer John and Betsy are playing a game with N (1 <= N <= 30,000)identical cubes labeled 1 through N. They start with N stacks, each containing a single cube. Farmer John asks Betsy to perform P (1<= P <= 100,000) operation. There…
若说代码 那真的是很水 但是 思想却有点意思 这道题是洛谷博弈论专题的第一道入门题, 然而刚开始我是不会做的, 毕竟是道入门题, 我博弈论还没入门呢. 这道题的做法就是: 如果m为偶数, 那么先手赢(即pb), 如果m为奇数, 那么后手赢(即zs). 做法很简单, 可是我们要知道怎么做的 说实话我对于他们两个都聪明绝顶, 都会按照最优策略来走很不感冒. 既然他们聪明绝顶, 那么先手明知道m为奇数时自己会输, 为什么不洒脱一点走呢? 也许乱走出奇迹? 那我们来试试看. 当m = 13时, 先手为什…
题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 5来描述,第i个数字表示在第i行的相应位置有一个棋子,如下: 行号 1 2 3 4 5 6 列号 2 4 6 1 3 5 这只是跳棋放置的一个解.请编一个程序找出所有跳棋放置的解.并把它们以上面的序列方法输出.解按字典顺序排列.请输出前3个解.最后一行是解的总个数. //以下的话来自usaco官方…
今天难得做了做洛谷的题,而且还是两个! P1075:已知正整数n是两个不同的质数的乘积,试求出两者中较大的那个质数.输入格式:一个正整数n.输出格式:一个正整数p,即较大的那个质数. 第一版代码: #include<iostream> using namespace std; bool isZhi(int a) { )return false; ;i<a;i++) { )return false; } return true; } int main() { int n; cin>&…