CNN 卷积层输入Map大小计算】的更多相关文章

对于输出的size计算: out_height=((input_height - filter_height + padding_top+padding_bottom)/stride_height )+1 out_width=((input_width - filter_width + padding_left+padding_right)/stride_width )+1 在以下情况下: 1.四边的padding大小相等.padding_top=padding_bottom=padding_l…
刚刚接触Tensorflow,由于是做图像处理,因此接触比较多的还是卷及神经网络,其中会涉及到在经过卷积层或者pooling层之后,图像Feature map的大小计算,之前一直以为是与caffe相同的,后来查阅了资料发现并不相同,将计算公式贴在这里,以便查阅: caffe中: TF中:…
符号表示: $W$:表示当前层Feature map的大小. $K$:表示kernel的大小. $S$:表示Stride的大小. 具体来讲: 整体说来,和下一层Feature map大小最为密切的就是Stride了,因为按照CNN的移动方式,是根据Stride来进行移动的,因此除了最后一个的长度为K之外,前面所有的长度全部为S.当然K=S仅仅是一种特殊情况而已. 正如这幅图片所示(有点丑,将就着看吧),为了直观,故意将重叠的部分给忽略掉,这样可以更清楚的明白到底是怎样一回事. 因此最后的公式就是…
本篇介绍卷积层的线性部分 一.与全连接层相比卷积层有什么优势? 卷积层可以节省参数,因为卷积运算利用了图像的局部相关性——分析出一小片区域的特点,加上Pooling层(汇集.汇聚),从附近的卷积结果中再采样选择一些高价值的信息,让特征向少而精的方向前进. 全连接层相当于考虑全局(整张图像)的特征 二.卷积的另一种解释 傅里叶变换:将数据从空间域的展示形式转变到频率域的形式. 理解:图像比作一道做好的菜,傅里叶变换就是找出这道菜具体 的配料及各种配料的用量. 图像中,低频信息是大体轮廓(整体),高…
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/52166388 以VGG_16的网络为例,在测试时,一张输入图像,在卷积层conv5_3,feature map的shape是(1,512,M,N),这样一个高维矩阵,如何输出呢? 借用numpy中的numpy.savetxt可以轻松解决: import numpy as np import caffe ... feature_conv…
卷积层的非线性部分 一.ReLU定义 ReLU:全称 Rectified Linear Units)激活函数 定义 def relu(x): return x if x >0 else 0 #Softplus为ReLU的平滑版 二.传统sigmoid系激活函数 Sigmoid与人的神经反应很相似,在很多浅层模型上发挥巨大作用 传统神经网络中最常用的两个激活函数,Sigmoid系(Logistic-Sigmoid.Tanh-Sigmoid)被视为神经网络的核心所在. 从数学上来看,非线性的Sigm…
padding的规则 ·        padding=‘VALID’时,输出的宽度和高度的计算公式(下图gif为例) 输出宽度:output_width = (in_width-filter_width+1)/strides_width  =(5-3+1)/2=1.5[向上取整=2] 输出高度:output_height = (in_height-filter_height+1)/strides_height  =(5-3+1)/2=1.5[向上取整=2] 输出的形状[1,2,2,1] imp…
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正…
https://blog.csdn.net/zouxy09/article/details/9993371 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢. 本文的论文来自: Notes on Convolutio…
''' Created on 2017年4月22日 @author: weizhen ''' import os import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data # 加载mnist_inference.py中定义的常量和前向传播的函数 import LeNet5_infernece # 配置神经网络的参数 BATCH_SIZE = 100 L…