机器学习实战5-KMeans聚类算法】的更多相关文章

一:一般K均值聚类算法实现 (一)导入数据 import numpy as np import matplotlib.pyplot as plt def loadDataSet(filename): dataSet = np.loadtxt(filename) return dataSet (二)计算两个向量之间的距离 def distEclud(vecA,vecB): #计算两个向量之间距离 return np.sqrt(np.sum(np.power(vecA-vecB,))) (三)随机初…
机器学习六--K-means聚类算法 想想常见的分类算法有决策树.Logistic回归.SVM.贝叶斯等.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非常大,想想如果给你50个G这么大的文本,里面已经分好词,这时需要将其按照给定的几十个关键字进行划分归类,监督学习的方法确实有点困难,而且也不划算,前期工作做得太多了. 这时候可以考…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第12篇文章,我们一起来看下Kmeans聚类算法. 在上一篇文章当中我们讨论了KNN算法,KNN算法非常形象,通过距离公式找到最近的K个邻居,通过邻居的结果来推测当前的结果.今天我们要来看的算法同样非常直观,也是最经典的聚类算法之一,它就是Kmeans. 我们都知道,在英文当中Means是平均的意思,所以也有将它翻译成K-均值算法的.当然,含义是一样的,都是通过求均值的方式来获取样本的类簇. 既然知道Kmeans算法…
一,引言 先说个K-means算法很高大上的用处,来开始新的算法学习.我们都知道每一届的美国总统大选,那叫一个竞争激烈.可以说,谁拿到了各个州尽可能多的选票,谁选举获胜的几率就会非常大.有人会说,这跟K-means算法有什么关系?当然,如果哪一届的总统竞选,某一位候选人是绝对的众望所归,那自然能以压倒性优势竞选成功,那么我们的k-means算法还真用不上.但是,我们应该知道2004年的总统大选中,候选人的得票数非常接近,接近到什么程度呢?如果1%的选民将手中的选票投向任何一位候选人,都直接决定了…
一,引言 先说个K-means算法很高大上的用处,来开始新的算法学习.我们都知道每一届的美国总统大选,那叫一个竞争激烈.可以说,谁拿到了各个州尽可能多的选票,谁选举获胜的几率就会非常大.有人会说,这跟K-means算法有什么关系?当然,如果哪一届的总统竞选,某一位候选人是绝对的众望所归,那自然能以压倒性优势竞选成功,那么我们的k-means算法还真用不上.但是,我们应该知道2004年的总统大选中,候选人的得票数非常接近,接近到什么程度呢?如果1%的选民将手中的选票投向任何一位候选人,都直接决定了…
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 转载请注明出处 ======================================…
一步步教你轻松学K-means聚类算法(白宁超  2018年9月13日09:10:33) 导读:k-均值算法(英文:k-means clustering),属于比较常用的算法之一,文本首先介绍聚类的理论知识包括什么是聚类.聚类的应用.聚类思想.聚类优缺点等等:然后通过k-均值聚类案例实现及其可视化有一个直观的感受,针对算法模型进行分析和结果优化提出了二分k-means算法.最后我们调用机器学习库函数,很短的代码完成聚类算法.(本文原创,转载必须注明出处:一步步教你轻松学K-means聚类算法 目…
K-means聚类算法 算法优缺点: 优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去. 1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好.另一种则是根据具体的需求确定,比…
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经典的聚类问题展开讨论.所谓聚类,就是事先并不知道具体分类方案的分类 (允许知道分类个数). 本文将介绍一个最为经典的聚类算法 - K-Means 聚类算法以及它的两种实现. 现实中的聚类分析问题 - 总统大选 假设 M 国又开始全民选举总统了,目前 Mr.OBM 的投票率为48%(投票数占所有选民人数的百分比…
K-means聚类算法(事先数据并没有类别之分!所有的数据都是一样的) 1.概述 K-means算法是集简单和经典于一身的基于距离的聚类算法 采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大. 该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标. 2.核心思想 通过迭代寻找k个类簇的一种划分方案,使得用这k个类簇的均值来代表相应各类样本时所得的总体误差最小. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开. k-means算…