CUDA SHARED MEMORY shared memory在之前的博文有些介绍,这部分会专门讲解其内容.在global Memory部分,数据对齐和连续是很重要的话题,当使用L1的时候,对齐问题可以忽略,但是非连续的获取内存依然会降低性能.依赖于算法本质,某些情况下,非连续访问是不可避免的.使用shared memory是另一种提高性能的方式. GPU上的memory有两种: · On-board memory · On-chip memory global memory就是一块很大的on…
"CUDA runtime is insufficient with CUDA driver"CUDA 9.2: 396.xx CUDA 9.1: 387.xx CUDA 9.0: 384.xx CUDA 8.0 375.xx (GA2) CUDA 8.0: 367.4x CUDA 7.5: 352.xx CUDA 7.0: 346.xx CUDA 6.5: 340.xx CUDA 6.0: 331.xx CUDA 5.5: 319.xx CUDA 5.0: 304.xx CUDA 4…
Hello, Hi everyone, I have a simple question. Could anyone explain to me the difference between Mailboxes and Shared Memory? A "Shared memory" (shm) is some portion of memory that you can share between process and threads. Like a malloc, you hav…
http://hi.baidu.com/pengkuny/item/c8070b388d75d481b611db7a 以前以为 shared memory 是一个万能的 L1 cache,速度很快,只要数据的 size 够小,能够放到 shared memory,剩下的事情我就不用操心啦.实际上不是这样,bank conflict 是一个绕不过去的问题,否则,性能会降得很低,很低,很低... ----------------------------------------------------…
关于共享内存(shared memory)和存储体(bank)的事实和疑惑 主要是在研究访问共享内存会产生bank conflict时,自己产生的疑惑.对于这点疑惑,网上都没有相关描述, 不管是国内还是国外的网上资料.貌似大家都是当作一个事实,一个公理,而没有对其仔细研究.还是我自己才学疏浅,不知道某些知识. 比如下面这篇讲解bank conflict的文章. http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-share…
ps:这是英伟达二面面的一道相关CUDA的题目.<NVIDIA CUDA编程指南>第57页开始          在合并访问这里,不要跟shared memory的bank conflict搞混淆了,这里很重要.          global memory没有被缓存(面试答错了!),因此,使用正确的存取模式来获得最大的内存带宽,更为重要,尤其是如何存取昂贵的设备内存device memory.          首先,设备device有能力,在一个单一指令下,从global memory中读…
在OpenCL中,用__local(或local)修饰的变量会被存放在一个计算单元(Compute Unit)的共享存储器区域中.对于nVidia的GPU,一个CU可以被映射为物理上的一块SM(Stream Multiprocessor):而对于AMD-ATi的GPU可以被映射为物理上的一块SIMD.不管是SM也好,SIMD也罢,它们都有一个在本计算单元中被所有线程(OpenCL中称为Work Item)所共享的共享存储器.因此,在一个计算单元内,可以通过local shared memory来…
来自吉浦迅科技 整理发布 http://mp.weixin.qq.com/s?__biz=MjM5NTE3Nzk4MQ==&mid=2651231163&idx=1&sn=d48b4480da3481de8ae20e78b1ee22df&scene=23&srcid=0605uZ1nd6QlqnK6AJdMlZkI#rd 第五名:Tesla K80 Tesla --英伟达高端大气上档次专用计算卡品牌,以性能高.稳定性强,适用于长时间高强度计算著称. Tesla K8…
掌握部分硬件知识,有助于程序员编写更好的CUDA程序,提升CUDA程序性能,本文目的是理清sp,sm,thread,block,grid,warp之间的关系.由于作者能力有限,难免有疏漏,恳请读者批评指正.  首先我们要明确:SP(streaming Process),SM(streaming multiprocessor)是硬件(GPU hardware)概念.而thread,block,grid,warp是软件上的(CUDA)概念. 从硬件看 SP:最基本的处理单元,streaming pr…
CUDA SHARED MEMORY shared memory在之前的博文有些介绍,这部分会专门讲解其内容.在global Memory部分,数据对齐和连续是很重要的话题,当使用L1的时候,对齐问题可以忽略,但是非连续的获取内存依然会降低性能.依赖于算法本质,某些情况下,非连续访问是不可避免的.使用shared memory是另一种提高性能的方式. GPU上的memory有两种: · On-board memory · On-chip memory global memory就是一块很大的on…
2017年5月25日 0. 概述 FFmpeg可通过Nvidia的GPU进行加速,其中高层接口是通过Video Codec SDK来实现GPU资源的调用.Video Codec SDK包含完整的的高性能工具.源码及文档,支持,可以运行在Windows和Linux系统之上.从软件上来说,SDK包含两类硬件加速接口,用于编码加速的NVENCODE API和用于解码加速的NVDECODE API(之前被称为NVCUVID API).从硬件上来说,Nvidia GPU有一到多个编解码器(解码器又称硬件加…
1.在用vs运行cuda的一些例子时,在编译阶段会报出很多警告: warning C4819 ...... 解决这个警告的方法是打开出现warning的文件,Ctrl+A全选,然后在文件菜单:file->Advanced save options,在弹出的选项中选择新的编码方式为:UNICODE- codepage 1200 ,点确定后重新编译. 为什么会出现这个警告呢?原因在于NvidIA方面,他们的在编写文件的时候用的字符集不通用. 2.关于warp和half-warp 一个warp包含32…
GPU 的硬体架构   这里我们会简单介绍,NVIDIA 目前支援CUDA 的GPU,其在执行CUDA 程式的部份(基本上就是其shader 单元)的架构.这里的资料是综合NVIDIA 所公布的资讯,以及NVIDIA 在各个研讨会.学校课程等所提供的资料,因此有可能会有不正确的地方.主要的资料来源包括NVIDIA 的CUDA Programming Guide 1.1.NVIDIA 在Supercomputing '07 介绍CUDA 的session,以及UIUC 的CUDA 课程. GPU…
GPGPU OpenCL/CUDA 高性能编程的10大注意事项 1.展开循环 如果提前知道了循环的次数,可以进行循环展开,这样省去了循环条件的比较次数.但是同时也不能使得kernel代码太大. 循环展开代码例子: #include<iostream> using namespace std; int main(){ ; ;i<=;i++){ sum+=i; } sum=; ;i<=;i=i+){ sum+=i; sum+=i+; sum+=i+; sum+=i+; sum+=i+;…
CUDA并行存储模型 CUDA将CPU作为主机(Host),GPU作为设备(Device).一个系统中可以有一个主机和多个设备.CPU负责逻辑性强的事务处理和串行计算,GPU专注于执行高度线程化的并行处理任务.它们拥有相互独立的存储器(主机端的内存和显卡端的显存). 运行在GPU上的函数称为kernel(内核函数).一个完整的CUDA程序是由一些列的kernel函数和主机端的串行处理步骤共同完成的.CPU串行代码的工作包括在kernel启动前进行的数据准备.设备初始化以及在kernel之间进行一…
GPU的硬件结构,也不是具体的硬件结构,就是与CUDA相关的几个概念:thread,block,grid,warp,sp,sm. sp: 最基本的处理单元,streaming processor  最后具体的指令和任务都是在sp上处理的.GPU进行并行计算,也就是很多个sp同时做处理 sm:多个sp加上其他的一些资源组成一个sm,  streaming multiprocessor. 其他资源也就是存储资源,共享内存,寄储器等. warp:GPU执行程序时的调度单位,目前cuda的warp的大小…
__syncthreads()是cuda的内建函数,用于块内线程通信. __syncthreads() is you garden variety thread barrier. Any thread reaching the barrier waits until all of the other threads in that block also reach it. It is designed for avoiding race conditions when loading share…
Warp 逻辑上,所有thread是并行的,但是,从硬件的角度来说,实际上并不是所有的thread能够在同一时刻执行,接下来我们将解释有关warp的一些本质. Warps and Thread Blocks warp是SM的基本执行单元.一个warp包含32个并行thread,这32个thread执行于SMIT模式.也就是说所有thread执行同一条指令,并且每个thread会使用各自的data执行该指令. block可以是一维二维或者三维的,但是,从硬件角度看,所有的thread都被组织成一维…
前面扯了很多,不过大多都是在讲CUDA 在软体层面的东西:接下来,虽然Heresy 自己也不熟,不过还是来研究一下硬体的部分吧-毕竟要最佳化的时候,好像还是要大概知道一下相关的东西的.这部分主要参考资料是: [Hotball's Hive]GPU 的硬体架构 Programming Massively Parallel Processors的Lecture 7 在研究硬体架构前,可能须要先回去看<nVidia CUDA简介>,稍微回顾一下在CUDA中thread.thread block.bl…
TI OpenCL v01.01.xx TI OpenCL™ Runtime Documentation Contents: Introduction OpenCL 1.1 Reference Material Compilation Compile Host OpenCL Applications Compiling OpenCL C Programs Create an OpenCL program from source, with embedded source Create an Op…
在https://www.cnblogs.com/xiaoxiaoyibu/p/11402607.html中介绍了使用一个包含N个线程的线程块和共享内存进行数组归约求和, 基本思路: 定义M个包含N个线程的线程块时(NThreadX = ((NX + ThreadX - 1) / ThreadX)),全局线程索引需使用tid = blockIdx.x * blockDim.x + threadIdx.x,而在每个线程块中局部线程索引是i = threadIdx.x, 每个线程块只计算一部分求和,…
共享内存(shared memory)是位于SM上的on-chip(片上)一块内存,每个SM都有,就是内存比较小,早期的GPU只有16K(16384),现在生产的GPU一般都是48K(49152). 共享内存由于是片上内存,因而带宽高,延迟小(较全局内存而言),合理使用共享内存对程序效率具有很大提升. 下面是使用共享内存对一个数组进行求和,使用全局内存进行归约求和可以浏览https://www.cnblogs.com/xiaoxiaoyibu/p/11397205.html #pragma on…
CUDA是NVIDIA的GPU开发工具,眼下在大规模并行计算领域有着广泛应用. windows平台上面的CUDA开发之前.最好去NVIDIA官网查看说明,然后下载对应的driver. ToolKits等等. 假设你下载最新版本号的CUDA7.0.里面事实上已经包括了driver及Tool kits. 特别要注意:目标最高版本号为CUDA7.0.仅支持64位系统(32位没法安装CUDA 7.0 Tool Kits).另外,VS编译平台最低要求是VS2010. So,那些依旧用VC6或者VS2008…
CUDA从入门到精通(零):写在前面 在老板的要求下,本博主从2012年上高性能计算课程开始接触CUDA编程,随后将该技术应用到了实际项目中,使处理程序加速超过1K,可见基于图形显示器的并行计算对于追求速度的应用来说无疑是一个理想的选择.还有不到一年毕业,怕是毕业后这些技术也就随毕业而去,准备这个暑假开辟一个CUDA专栏,从入门到精通,步步为营,顺便分享设计的一些经验教训,希望能给学习CUDA的童鞋提供一定指导.个人能力所及,错误难免,欢迎讨论. PS:申请专栏好像需要先发原创帖超过15篇...…
子曰:工欲善其事,必先利其器.我们要把显卡作为通用并行处理器来做并行算法处理,就得知道CUDA给我提供了什么样的接口,就得了解CUDA作为通用高性能计算平台上的一十八般武器.(如果你想自己开发驱动,自己写开发库- -那我不得不佩服你很有时间,想必也不会有很多人想自己在去实现一个CUDA吧,呵呵,虽然实现一个也不是太难).前面我们讲到了一些简单的CUDA的C语言扩展的规则,下面就具体来讲解CUDA给我听哦买提供了多少方便的API函数.在开发CUDA的时候,CDUA也给我们提供了一套完整的API函数…
__syncthreads()是cuda的内建函数,用于块内线程通信. __syncthreads() is you garden variety thread barrier. Any thread reaching the barrier waits until all of the other threads in that block also reach it. It is designed for avoiding race conditions when loading share…
[神经网络与深度学习][CUDA开发]caffe-windows win32下的编译尝试 标签:[神经网络与深度学习] [CUDA开发] 主要是在开发Qt的应用程序时,需要的是有一个使用的库文件也只是win32,死活找不到x64的库,对是gnuwin32,没有找到gnuwin64,也是哭了,于是想着是不是能够将Caffe按照win32的配置进行重新编译一番.结果可想而知,遇到了一堆的问题,很伤心,最后也没有解决,不,最后是完全将cuDNN和CUDA全部去掉后才成功的,因为cuDNN没有找到所谓的…
JetPack(Jetson SDK)是一个按需的一体化软件包,捆绑了NVIDIA®Jetson嵌入式平台的开发人员软件.JetPack 3.0包括对Jetson TX2 , Jetson TX1和Jetson TK1开发套件的最新L4T BSP软件包的支持. 使用最新的BSP( 用于Jetson TX1的L4T 27.1,用于Jetson TX1的 L4T 24.2.1和用于Jetson TK1的L4T 21.5 )自动刷新您的Jetson开发套件,并安装构建和配置Jetson嵌入式平台应用所…
原文链接:https://developer.nvidia.com/ffmpeg GPU-accelerated video processing integrated into the most popular open-source multimedia tools. FFmpeg and libav are among the most popular open-source multimedia manipulation tools with a library of plugins t…
[CUDA开发]CUDA面内存拷贝用法总结 标签(空格分隔): [CUDA开发] 主要是在调试CUDA硬解码并用D3D9或者D3D11显示的时候遇到了一些代码,如下所示: CUdeviceptr g_pRgba = 0; CUDA_MEMCPY2D memcpy2D = { 0 }; memcpy2D.srcMemoryType = CU_MEMORYTYPE_DEVICE; memcpy2D.srcDevice = g_pRgba; memcpy2D.srcPitch = nWidth * 4…