GMA Round 1 数列求单项】的更多相关文章

传送门 数列求单项 在数列{$a_n$}中,$a_1=-\frac{1}{4}$,$\frac{1}{a_{n+1}}+\frac{1}{a_n}=\begin{cases}-3(n为偶数)\\3(n为奇数) \end{cases}$ 求$a_{233}$的值,保留6位小数. 设$b_n=\frac{1}{a_n}$,易得$b_n=(-1)^n(3n+1)$,因此$a_n=\frac{1}{(-1)^n(3n+1)}$. 定位:简单题…
传送门 数列与方程 首项为1,各项均大于0的数列{$a_n$}的前n项和$S_n$满足对于任意正整数n:$S_{n+1}^2-2*S_{n+1}*S_{n}-\sqrt{2}*S_n-1=0$,求$a_{30}$的值,保留3位小数. 由$S_{n+1}^2-2S_{n+1}S_{n}-\sqrt{2}S_n-1=0$,$S_{n+1}=a_{n+1}+S_n$可得$a_{n+1}^2=S_n^2+\sqrt{2}S_n+1=S_n^2+1-2*S_n*cos\frac{3\pi}{4}$. 因此…
传送门 数列求和(Hard) 在数列{$a_n$}中,$a_1=-\frac{1}{4}$,$\frac{1}{a_{n+1}}+\frac{1}{a_n}=\begin{cases}-3(n为偶数)\\3(n为奇数) \end{cases}$ 当n趋近于正无穷时,求{$a_n$}的前n项和. 由泰勒公式得 $$\frac{1}{1+x^3}=1-x^3+x^6-x^9+……+(-1)^nx^{3n}+……(x\in(-1,1))$$ 对两端从0到t进行积分得 $$\int_{0}^{t}\fr…
传送门 函数求值 设函数$f(x)=x^{2018}+a_{2017}*x^{2017}+a_{2016}*x^{2016}+...+a_{2}*x^2+a_{1}*x+a_{0}$,其中$a_{0},a_{1},a_{2},....,a_{2016},a_{2017}$是实常数. 已知$f(1)=212,f(2)=424,……,f(k)=k*212,……,f(2017)=2017*212$.求$f(2018)+f(0)-A_{2018}^{2018}$ 设g(x)=f(x)-212x,1~20…
学弟说我好久没更blog了. 因为自己最近其实没干什么. 所以来搬运一下GMA Round 1 的比赛内容吧,blog访问量.网站流量一举两得. 链接:https://enceladus.cf/contest.html?id=1 题目&&解题报告都搬运到blog里了.…
试题 C: 数列求值本题总分: 10 分[问题描述]给定数列 1, 1, 1, 3, 5, 9, 17, …,从第 4 项开始,每项都是前 3 项的和.求第 20190324 项的最后 4 位数字.[答案提交]这是一道结果填空的题,你只需要算出结果后提交即可.本题的结果为一个 4 位整数(提示:答案的千位不为 0),在提交答案时只填写这个整数,填写多余的内容将无法得分. 也是很简单的一道题,只要求最后4位数字,两个十分庞大的数相加后结果的四位数是等于他们各自取后面四位数相加得到的后四位数的,所以…
试题 C: 数列求值 本题总分:10 分 [问题描述] 给定数列 1, 1, 1, 3, 5, 9, 17, -,从第 4 项开始,每项都是前 3 项的和.求 第 20190324 项的最后 4 位数字. [答案提交] 这是一道结果填空的题,你只需要算出结果后提交即可.本题的结果为一 个 4 位整数(提示:答案的千位不为 0),在提交答案时只填写这个整数,填写 多余的内容将无法得分. package JavaB; public class shulieqiuzhi { //此题类似于斐波那契数列…
传送门 奇怪的数列 已知数列{$a_n$},$a_1=1$,$a_{n+1}=a_n+\frac{1}{a_n}$,现在需要你估计$a_{233333}$的值,求出它的整数部分即可. 将原等式两边平方得$a_{n+1}^2=a_n^2+2+\frac{1}{a_n^2}$,$\frac{1}{a_n^2}$可舍去,于是$a_n\approx\sqrt{2*n-1}$ 定位:简单题.思维题…
题目大意: 给出一个长度为n的数列a1,a2,a3,...,an,以及m组询问(li,ri,ki),求区间[li,ri]中有多少数在该区间中的出现次数与ki互质. 思路: 莫队. f[i]记录数字i出现的次数,用一个链表记录f[i]的出现次数. 一开始没用链表,用map,在SimpleOJ上随便A,但是在LOJ上只有50分. #include<cmath> #include<cstdio> #include<cctype> #include<algorithm&g…
前言略. 看到这个题目本来应该很高兴的,因为什么,因为太TM的基础了啊! 可是当你用常规方法尝试提交OJ时你会发现..hhh...运行超时..(开心地摇起了呆毛 //Fibonacci数列递归一般问题常规方法(当目标序列号<32时适用 评判标准:运行时间<1.00s) #include <iostream> using namespace std; long Fib(int); int main() { ; cin >> n; cout << Fib(n)…