EM算法与高斯混合模型 前言 EM算法是一种用于含有隐变量的概率模型参数的极大似然估计的迭代算法.如果给定的概率模型的变量都是可观测变量,那么给定观测数据后,就可以根据极大似然估计来求出模型的参数,比如我们假设抛硬币的正面朝上的概率为p(相当于我们假设了概率模型),然后根据n次抛硬币的结果就可以估计出p的值,这种概率模型没有隐变量,而书中的三个硬币的问题(先抛A然后根据A的结果决定继续抛B还是C),这种问题中A的结果就是隐变量,我们只有最后一个硬币的结果,其中的隐变量无法观测,所以这种无法直接根…
本系列笔记内容参考来源为李航<统计学习方法> EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计或极大后验概率估计.迭代由 (1)E步:求期望 (2)M步:求极大 组成,称为期望极大算法. EM算法引入 EM算法是通过不断求解下界的极大化逼近求解对数似然函数极大化的算法. EM在监督学习中的应用 收敛性 EM算法在高斯混合模型学习中的应用 高斯混合模型 高斯混合模型参数估计的EM算法 EM算法的推广 EM算法还可解释为F函数的极大-极大算法,基于这个解释有若干变形与推广. 首先…
注:本文是对<统计学习方法>EM算法的一个简单总结. 1. 什么是EM算法? 引用书上的话: 概率模型有时既含有观测变量,又含有隐变量或者潜在变量.如果概率模型的变量都是观测变量,可以直接使用极大似然估计法或者贝叶斯的方法进行估计模型参数,但是当模型含有隐藏变量时,就不能简单使用这些方法了.EM算法就是含有隐变量的概率模型参数的极大似然估计法,或者极大似然后验概率估计法. 2. EM 算法的一个小例子:三硬币模型 假设有3枚硬币,记作A,B,C.这些硬币的正面出现的概率分别为\(\pi\).\…
斯坦福大学机器学习,EM算法求解高斯混合模型.一种高斯混合模型算法的改进方法---将聚类算法与传统高斯混合模型结合起来的建模方法, 并同时提出的运用距离加权的矢量量化方法获取初始值,并采用衡量相似度的方法来融合高斯分量.从对比结果可以看出,基于聚类的高斯混合模型的说话人识别相对于传统的高斯混合模型在识别率上有所提高. ------------------------------ 高斯模型有单高斯模型(SGM)和混合高斯模型(GMM)两种. (1)单高斯模型: 为简单起见,阈值t的选取一般靠经验值…
极大似然估计,只是一种概率论在统计学的应用,它是参数估计的方法之一.说的是已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值.最大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值.      我们先来假设这样一个问题:要求解人群(100人)中男女身高的分布,这里很明显有两种分布,男和女,但是事先我们并不知道他们服从哪种分布,而且…
极大似然估计是利用已知的样本结果,去反推最有可能(最大概率)导致这样结果的参数值,也就是在给定的观测变量下去估计参数值.然而现实中可能存在这样的问题,除了观测变量之外,还存在着未知的隐变量,因为变量未知,因此无法直接通过最大似然估计直接求参数值.EM算法是一种迭代算法,用于含有隐变量的概率模型的极大似然估计,或者说是极大后验概率估计. 1.经典的三硬币模型 引入一个例子来说明隐变量存在的问题.假设有3枚硬币,分别记作A,B,C.这些硬币正面出现的概率分别是π,p,q.我们的实验过程如下,先投掷硬…
EM算法一般表述:       当有部分数据缺失或者无法观察到时,EM算法提供了一个高效的迭代程序用来计算这些数据的最大似然预计.在每一步迭代分为两个步骤:期望(Expectation)步骤和最大化(Maximization)步骤,因此称为EM算法. 如果所有数据Z是由可观測到的样本X={X1, X2,--, Xn}和不可观測到的样本Z={Z1, Z2,--, Zn}组成的,则Y = X∪Z.EM算法通过搜寻使所有数据的似然函数Log(L(Z; h))的期望值最大来寻找极大似然预计,注意此处的h…
EM算法 EM算法主要用于求概率密度函数参数的最大似然估计,将问题$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{1}\right)$转换为更加易于计算的$\sum_{i=1}^{n} \ln p\left(x_{i}, \theta_{2} | \theta_{1}\right)$,其中$\theta_2$可以取任意的先验分布$q(\theta_2)$.EM算法的推导过程如下:$$\begin{aligned…
本文,意在说明<统计学习方法>第九章EM算法的三硬币例子,公式(9.5-9.6如何而来) 下面是(公式9.5-9.8)的说明, 本人水平有限,怀着分享学习的态度发表此文,欢迎大家批评,交流.感谢您的阅读.欢迎转载本文,转载时请附上本文地址:http://www.cnblogs.com/Dzhouqi/p/3203776.html另外:欢迎访问我的博客 http://www.cnblogs.com/Dzhouqi/…
EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计.EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求极大(Maximization). EM算法的引入 给一些观察数据,可以使用极大似然估计法,或贝叶斯估计法估计模型参数.但是当模型含有隐变量时,就不能简单地使用这些方法.有些时候,参数的极大似然估计问题没有解析解,只能通过迭代的方法求解,EM算法就是可以用于求解这个问题的一种迭代算法. EM算法 输…
# coding:utf-8 import numpy as np def qq(y,alpha,mu,sigma,K,gama):#计算Q函数 gsum=[] n=len(y) for k in range(K): gsum.append(np.sum([gama[j,k] for j in range(n)])) return np.sum([g*np.log(ak) for g,ak in zip(gsum,alpha)])+\ np.sum([[np.sum(gama[j,k]*(np.…
1 EM算法的引入1.1 EM算法1.2 EM算法的导出2 EM算法的收敛性3EM算法在高斯混合模型的应用3.1 高斯混合模型Gaussian misture model3.2 GMM中参数估计的EM算法4 EM推广4.1 F函数的极大-极大算法 期望极大值算法(expectation maximizition algorithm,EM).是一种迭代算法,1977年由Dempster总结提出,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计或极大后验估计.EM算法分为…
这篇博客整理K均值聚类的内容,包括: 1.K均值聚类的原理: 2.初始类中心的选择和类别数K的确定: 3.K均值聚类和EM算法.高斯混合模型的关系. 一.K均值聚类的原理 K均值聚类(K-means)是一种基于中心的聚类算法,通过迭代,将样本分到K个类中,使得每个样本与其所属类的中心或均值的距离之和最小. 1.定义损失函数 假设我们有一个数据集{x1, x2,..., xN},每个样本的特征维度是m维,我们的目标是将数据集划分为K个类别.假定K的值已经给定,那么第k个类别的中心定义为μk,k=1…
一.高斯混合模型概述 1.公式 高斯混合模型是指具有如下形式的概率分布模型: 其中,αk≥0,且∑αk=1,是每一个高斯分布的权重.Ø(y|θk)是第k个高斯分布的概率密度,被称为第k个分模型,参数为θk=(μk, αk2),概率密度的表达式为: 高斯混合模型就是K个高斯分布的线性组合,它假设所有的样本可以分为K类,每一类的样本服从一个高斯分布,那么高斯混合模型的学习过程就是去估计K个高斯分布的概率密度Ø(y|θk),以及每个高斯分布的权重αk.每个观测样本出现的概率就表示为K个高斯分布概率的加…
1. 通过一个简单的例子直观上理解EM的核心思想 0x1: 问题背景 假设现在有两枚硬币Coin_a和Coin_b,随机抛掷后正面朝上/反面朝上的概率分别是 Coin_a:P1:-P1 Coin_b:P2:-P2 为了估计这个概率(我们事先是不知道这两枚硬币正面朝上的概率的),我们需要通过实验法来进行最大似然估计,每次取一枚硬币,连掷5下,记录下结果 硬币 结果 统计 Coin_a 正 正 反 正 反 3正-2反 Coin_b 反 反 正 正 反 2正-3反 Coin_a 正 反 反 反 反 1…
EM算法有很多的应用: 最广泛的就是GMM混合高斯模型.聚类.HMM等等. The EM Algorithm 高斯混合模型(Mixtures of Gaussians)和EM算法 EM算法 求最大似然函数估计值的一般步骤: (1)写出似然函数: (2)对似然函数取对数,并整理: (3)求导数,令导数为0,得到似然方程: (4)解似然方程,得到的参数即为所求. 期望最大化算法(EM算法): 优点: 1. 简单稳定: 2. 通过E步骤和M步骤使得期望最大化,是自收敛的分类算法,既不需要事先设定类别也…
''' 数据集:伪造数据集(两个高斯分布混合) 数据集长度:1000 ------------------------------ 运行结果: ---------------------------- the Parameters set is: alpha0:0.3, mu0:0.7, sigmod0:-2.0, alpha1:0.5, mu1:0.5, sigmod1:1.0 ---------------------------- the Parameters predict is: al…
1.引言 以前我们讨论的概率模型都是只含观测变量(observable variable), 即这些变量都是可以观测出来的,那么给定数据,可以直接使用极大似然估计的方法或者贝叶斯估计的方法:但是当模型含有隐变量(latent variable)的时候, 就不能简单地使用这些估计方法. 如在高斯混合和EM算法中讨论的高斯混合就是典型的含有隐变量的例子,已经给出EM算法在高斯混合模型中的运用,下面我们来讨论一些原理性的东西. 2.Jensen 不等式 令是值域为实数的函数,那么如果,则就是一个凸函数…
概述 EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计. EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求极大( maximization ),所以这一算法称为期望极大算法(expectation maximization algorithm),简称EM算法.  EM算法的引入 一般地,用Y表示观测随机变量的数据,Z表示隐随机变量的数据.Y和Z连在一起称为完全数据( complete-data…
前言 支持向量机(SVM)是一种很重要的机器学习分类算法,本身是一种线性分类算法,但是由于加入了核技巧,使得SVM也可以进行非线性数据的分类:SVM本来是一种二分类分类器,但是可以扩展到多分类,本篇不会进行对其推导一步一步罗列公式,因为当你真正照着书籍进行推导后你就会发现他其实没那么难,主要是动手.本篇主要集中与实现,即使用著名的序列最小最优化(SMO)算法进行求解,本篇实现的代码主要参考了Platt J. Sequential minimal optimization: A fast algo…
EM算法及其应用(一) EM算法及其应用(二): K-means 与 高斯混合模型 EM算法是期望最大化 (Expectation Maximization) 算法的简称,用于含有隐变量的情况下,概率模型参数的极大似然估计或极大后验估计.EM算法是一种迭代算法,每次迭代由两步组成:E步,求期望 (expectation),即利用当前估计的参数值来计算对数似然函数的期望值:M步,求极大 (maximization),即求参数\(\theta\) 来极大化E步中的期望值,而求出的参数\(\theta…
CH01 统计学方法概论 前言 章节目录 统计学习 监督学习 基本概念 问题的形式化 统计学习三要素 模型 策略 算法 模型评估与模型选择 训练误差与测试误差 过拟合与模型选择 正则化与交叉验证 正则化 交叉验证 泛化能力 泛化误差 泛化误差上界 生成模型与判别模型 分类问题 标注问题 回归问题 导读 直接看目录结构,会感觉有点乱,就层级结构来讲感觉并不整齐. 可以看本章概要部分,摘录几点,希望对本章内容编排的理解有帮助: 1. 统计学习三要素对理解统计学习方法起到提纲挈领的作用 2. 本书主要…
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断,混合高斯模型GMM,基于概率统计的pLSA模型. EM算法概述(原文) 我们经常会从样本观察数据中,找出样本的模型参数. 最常用的方法就是极大化模型分布的对数似然函数. 但是在一些情况下,我们得到的观察数据有未观察到的隐含数据,此时我们未知的有隐含数据和模型参数,因而无法直接用极大化对数似然函数得到模型分布的参…
一.极大似然已经发生的事件是独立重复事件,符合同一分布已经发生的时间是可能性(似然)的事件利用这两个假设,已经发生时间的联合密度值就最大,所以就可以求出总体分布f中参数θ 用极大似然进行机器学习有监督学习:最大熵模型无监督学习:GMM 二.熵和信息自信息i(x) = -log(p(x)) 信息是对不确定性的度量.概率是对确定性的度量,概率越大,越确定,可能性越大.信息越大,越不确定. 熵是对平均不确定性的度量.熵是随机变量不确定性的度量,不确定性越大,熵值越大.H(x) = -∑p(x)log⁡…
高斯混合模型的EM算法 混合高斯模型 高斯混合模型的概率分布可以写成多个高斯分布的线形叠加,即 \[ p(\mathbf x) = \sum_{k=1}^{K}\pi_k\mathcal N(\mathbf x\ | \ \mathbf \mu_k, \mathbf \Sigma_k) \] 引入一个\(K\)维的二值随机变量\(\mathbf z\), 采用"\(1\)-of-\(K\)"编码,其中一个特定的元素\(z_k\)等于\(1\),其余所有的元素都等于\(0\). 于是\(…
一.EM算法是什么? EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计. 作用:简单直白的说,估计参数 是一种生成模型 (1)用在概率模型中 (2)含有隐变量 (3)用极大似然估计方法估计参数 个人理解,概率模型中的一些参数,通常是一些概率: (1)如果概率模型中的变量全部可观测,那可以统计各个变量出现的次数,然后可以求取频率,用频率估计概率 (2)如果概率模型中存在着不可观测的隐变量,直接求频率可能会不可行,此时采用EM算法来求取参数. 按照什么标准极大化参数呢? 用Y表示观…
  EM算法是一种迭代算法,是一种用于计算包含隐变量概率模型的最大似然估计方法,或极大后验概率.EM即expectation maximization,期望最大化算法. 1. 极大似然估计   在概率模型中,若已知事件服从的分布或者其他概率模型的参数,那么我们可以通过计算得到某事件发生的概率.而在估计中,这些变成了方向过程:已知一组数据发生的结果,相当于获得了经验概率,通过这组数据假设模型服从什么分布,再通过经验概率求解模型参数.   比如统计学校学生身高服从的概率分布,抽样1000人得到他们的…
EM也称期望极大算法(Expectation Maximization),是一种用来对含有隐含变量的概率模型进行极大似然估计的迭代算法.该算法可应用于隐马尔科夫模型的参数估计. 1.含有隐含参数的概率模型举例? 三硬币模型:A.B.C三枚硬币,这些硬币投出正面的概率分别为π.p.q.进行如下硬币实验,先投硬币A,如果为正面则投硬币B,如果为反面则投硬币C.最终出现的正面则记为1,出现反面则记为0:独立的重复n次实验(取n=10),出现的结果如下: {1,1,0,1,0,1,0,1,1} 假设只能…
作者:桂. 时间:2017-05-13  14:19:14 链接:http://www.cnblogs.com/xingshansi/p/6847334.html . 前言 内容主要是CART算法的学习笔记. CART算法是一个二叉树问题,即总是有两种选择,而不像之前的ID3以及C4.5B可能有多种选择.CART算法主要有回归树和分类树,二者常用的准则略有差别:回归树是拟合问题,更关心拟合效果的好坏,此处用的是均方误差准则; 分类树是分类问题,更像是离散变量的概率估计,用与熵类似的Gini系数进…
最近阅读了李航的<统计学习方法(第二版)>,对AdaBoost算法进行了学习. 在第八章的8.1.3小节中,举了一个具体的算法计算实例.美中不足的是书上只给出了数值解,这里用代码将它实现一下,算作一个课后作业. 一.算法简述 Adaboost算法最终输出一个全局分类模型,由多个基本分类模型组成,每个分类模型有一定的权重,用于表示该基本分类模型的可信度.最终根据各基本分类模型的预测结果乘以其权重,通过表决来生成最终的预测(分类)结果. AdaBoost算法的训练流程图如下: AdaBoost在训…